登陆注册
8301000000009

第9章 数学教学的趣味知识推荐(5)

善良的魏尔斯特拉斯为了不让苏菲失望,决定自己教她,但他要先试试苏菲的水平,刚好他手里有一些准备给高年级学生演算的试题,他就叫苏菲做一做。令他吃惊的是,苏菲不仅演算迅速、答案清晰,而且很有独创性。从此,苏菲便在这位名师的指导下从事数学学习和研究。

1874年,德国的数学中心哥廷根大学,根据魏尔斯特拉斯教授的推荐和苏菲三篇高水平论文,未经口试,便授予苏菲博士学位。她成为哥廷根大学第二个女博士。之后,魏尔斯特拉斯教授极力推荐她去大学教书,但顽固的守旧势力始终不肯接纳她,苏菲只好回俄国去了。

在俄国,经科学院院士切比雪夫极力举荐苏菲去大学教书,但仍没有成功。后来,还是在魏尔斯特拉斯的瑞典学生帮助下,才使她有幸在斯德哥尔摩一所大学当数学讲师。

1888年,法国巴黎科学院悬赏解题——“刚体绕固点旋转的问题”,这是数学大师欧拉和拉格朗日长期感到棘手的问题。学术委员会采用密封评选的办法,在应征的15篇论文中,选出了一篇最出色的予以奖励,奖金5000法朗。打开选中的试卷一看,获奖者竟是俄国女性苏菲。

苏菲获此奖励在法国学术界轰动一时,她成为第一个跨进法国科学院大门的奇女子。她在偏微分方程方面很有建树。在此期间,她完成了法国大数学家柯西的一项研究,偏微分方程理论的一个重要基本定理“柯西——柯瓦列夫斯卡娅定理”,就是以柯西和苏菲二人的名字命名的。

苏菲获奖的第二年,斯德哥尔摩学院授予她一笔高额奖金,又正式任命她为大学教授。可是,守旧势力是顽固的。瑞典的着名作家特林倍格就此撰文说:“女人担任数学教授是奇怪的、有害的、难堪的现象。”但苏菲却以她出色的教学成绩,赢得了学生们的爱戴和尊敬。仅用一年时间,她就能用流畅的瑞典语讲课了。最终,瑞典人信服了她。

1891年,历经坎坷的苏菲在瑞典逝世,年仅41岁,人们把她安葬在斯德哥尔摩,表示对她永久景仰。

苏菲死后,她的大脑按北欧人的特殊习惯,进行了解剖研究,据说4年后,医生把她的大脑与德国大物理学家赫尔霍兹的脑量比较,发现她的大脑在比例上大于一般男人。

17.第一个算出地球周长的人

2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼(约公元前275-前194年)。

埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。

细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因为这时候所有地面上的直立物都应该没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立和形成的夹角。按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,地球的周长大约为4万公里,这是实际地球周长(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。还计算出太阳与地球间的距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近。这充分反映了埃拉托色尼的尝试说和智慧。

埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专着。书中描述了地球的形状、大小和海陆分布。埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学。

18.业余数学家之王——费马

17世纪的一位法国数学家,提出了一个数学难题,使得后来的数学家一筹莫展,这个人就是费马(1601-1665年)。

这道题是这样的:当n>2时,xn+yz=zn没有正整数解。在数学上这称为“费马大定理”。为了获得它的一个肯定的或者否定的证明,历史上几次悬赏征求答案,一代又一代最优秀的数学家都曾研究过,但是300多年过去了,至今既未获得最终证明,也未被推翻。即使用现代的电子计算机也只能证明:当n≤4100万时,费马大定理是正确的。由于当时费马声称他已解决了这个问题,但是没有公布结果,于是留下了数学难题中少有的千古之谜。

费马生于法国南部,在大学里学的是法律,以后以律师为职业,并被推举为议员。费马的业余时间全用来读书,哲学、文学、历史、法律样样都读。30岁时迷恋上数学,直到他64岁病逝,一生中有许多伟大的发现。不过,他极少公开发表论文、着作,主题通过与友人通信透露他的思想。在他死后,由儿子通过整理他的笔记和批注挖掘他的思想。好在费马有个“不动笔墨不读书”的习惯,凡是他读过的书,都有他的圈圈点点,勾勾画画,页边还有他的评论。他利用公务之余钻研数学,并且成果累累。后世数学家从他的诸多猜想和大胆创造中受益非浅,赞誉他为“业余数学家之王”。

费马对数学的贡献包括:与笛卡尔共同创立了解析几何;创造了作曲线切线的方法,被微积分发明人之一牛顿奉为微积分的思想先驱;通过提出有价值的猜想,指明了关于整数的理论——数论的发方向。他还研究了掷骰子赌博的输赢规律,从而成为古典概率论的奠基人之一。

19.康托尔的数学成就

伽利略曾作过这样的证明:DE是△ABC的中位线,DE=12BC,通过A引任意一条直线,必然有DE上的P′和BC上P一一对应,因此,DE所包含的点与BC所含的点“一样多”,导致结论:DE=BC,1=2。这是一个数学悖论。

由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。1874-1876年期间,不到30岁的年轻德国数学家康托尔(1845-1918年)向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的一点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”!后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。

康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。

真金不怕火炼,康托尔的思想终于大放光彩。1897年举行第一次国际数学家会议上,他的成就得到承认。伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”。可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。

康托尔生于俄国彼得堡一个丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。23岁获博士学们,以后一直从事数学教学研究。他所创立的集合论已被公认为全部数学的基础。

20.全能数学家——彭加勒

一位数学史权威评价彭加勒(1854-1912年)时说,他是“对于数学和它的应用具有全面知识人的最后一个人。”20世纪以来,数学进入了多学科、高难度的现代阶段,要想达到每个领域的最高成就已经不可能,但彭加勒确实是他那个时代的数学全才。

一般把数学划分为算术、代数、几何和分析四个领域,彭加勒对各个领域的研究成果,都是第一流的。他成功地解决了像太阳、地球、月亮间相互运动这一类的三体问题;他是现代物理的两大支住——相对论和量子力学的思想先驱;他研究科学哲学提出的“约定论”着重分析了人类理性认识的基本法则,日益受到当代哲学家的重视。在他从事科学研究的34年里,发表论文500篇,着作30多部,获得过法国、英国、俄国、瑞典、匈牙利等国家的奖赏,被聘为30多个国家的科学院院士。

1912年6月26日,彭加勒病逝前20天作了最后一次讲演,他说:“人生就是持续斗争。”彭加勒的一生就是斗争的一生。他因为小时候得过病,语言不够流畅,写字画图都有困难;还留下了喉头麻痹身体虚弱的后遗症。不少人把他当作笨人。他成为数学家后,一位心理学家通过测验仍然认定他是“笨人”。彭加勒取得成就的关键是注意力高度集中。他一生最大的嗜好就是读书,读书速度快,记忆准确持久。因为视力不好,书写困难,他上课不记笔记,全神贯注于听讲、思索、理解,长期的磨练,使他具备了运用大脑完成复杂运算,构思长篇论文的能力。1871年,17岁的彭加勒报考高等工业学校,轻松地解决了主考官特意为他设计的难题,尽管他的几何作图得了零分,学校也破格录取。1879年,25岁的彭加勒获数学博士学位,32岁任数学和物理学教授,以后在科学园地里辛勒耕耘26年。

21.非欧几何创始人之一

罗巴切夫斯基(1792-1856),俄国数学家,非欧几何的创始人之一。生于诺夫哥罗得即现在高尔基城。10岁进入中学,15岁进喀山大学,19岁获硕士学位,24岁任喀山大学数学教授。1826年2月6日罗巴切夫斯基在喀山大学提出了用法文写的论文《几何学原理简述及平行线定理的严格证明》。人们把这一天公认为是新几何的诞生日。1827年7月30日被选为喀山大学校长,一直连任到1846年。1829年《喀山通报》第一次登载了他的几何论述“关于几何学原理”。他的主要功绩是改变了欧几里得几何中的平行公理(即第五公设),提出了一种新的几何学,称为“双曲几何学”或罗巴切夫斯基几何学。但是它和传统的欧氏几何发生了矛盾,所以最初发表时不能被人理解,甚至被认为是荒谬的,因而在他生前这种几何思想未被人们重视。1856年2月24日罗巴切夫斯基逝世,1893年在他诞生100周年之际,为了纪念他在数学史上的杰出贡献,喀山大学树起了他的纪念像。1896年9月1日又在喀山大学对面树起了罗巴切夫斯基的纪念碑,将他的名字载入世界数学的光辉史册。

22.沈括和他的隙积术

沈括(公元1031~1095)是我国古代卓越的科学家,他出生于钱塘(杭州)。有一天,他和朋友在一家酒店喝酒时,看到院子里整整齐齐放着一堆酒坛。

“你猜,这堆酒坛有多少个?”朋友好奇地问,“一共有122个。”沈括沉思了一会儿回答。

后来,他的朋友把这堆酒坛搬开来,一个一个点了一下,果然一个不多,一个不少,恰好是122个,猜得真准呀!

原来他是计算出来的,因为酒坛叠得很有规律:每一层都排成长方形,而且下一层比上一层长、宽各增加一个,这堆酒坛有4层,他数得最上面一层长为5个,宽为3个,以下每层依次为6×4个,7×5个,8×6个,合计

5×3+6×4+7×5+8×6=122(个)。

一般地,假定共有n层,最上面一层为ab个,则以下每层依次为(a+1)(b+1)个,(a+2)(b+2)个,…,[a+(n-1)][b+(n-1)]个。所以这堆酒坛的总数为

S=ab+(a+1)(b+1)+(a+2)(b+2)+…+[a+(n-1)][b+(n-1)]。

下面我们来进行推导:

ab=ab,

(a+1)(b+1)=ab+1×(a+b)+12,

(a+2)(b+2)=ab+2×(a+b)+22,

……

[a+(n-1)][b+(n-1)]=ab+(n-1)(a+b)+(n-1)2,

∴S=nab+A(a+b)+B。

其中,A=1+2+…+(n-1)=n(n-1)2,

B=12+22+…+(n-1)2=n(n-1)(2n-1)6。

∴S=nab+n(n-1)2(a+b)+n(n-1)(2n-1)6

=n6[6ab+3(n-1)(a+b)+(n-1)(2n-1)]。

沈括认为通常求体积的各种公式,作为计算对象的形体都是实心的,但他的问题却是形体中间有空隙,因此就把这个方法称为隙积术了,不过,当时沈括把最上面一层的长和宽的个数分别记作a和b,最底下一层的长和宽的个数分别记作c和d,共n层,因此他得到的公式是

S=n6[(2b+d)a+(b+2d)c]+n6+(c-a)

同类推荐
  • 课本上读不到的地理故事

    课本上读不到的地理故事

    晴朗的天空突然下起倾盆大雨、沙漠中的湖泊居 然会漂移、博物馆里奇怪的雕像和图案……我们身边 这些有趣的生活现象其实蕴含着奥妙无穷的地理知识 。《课本上读不到的地理故事(适读于10-15岁)》 由李琳编著,将把你带进神奇的地理世界,让你知道 云彩是怎么形成的,为什么6月也会下雪,地球脸上 *大的“伤疤”在哪里,海水为什么会变成红色,百 慕大为什么喜欢“吃”飞机……《课本上读不到的地 理故事(适读于10-15岁)》收入的这些妙趣横生的地 理故事一定让你大开眼界、叹为观止,让你轻轻松松 爱上地理、学会地理。
  • 青少年必读著名作家的故事(启发青少年的科学故事集)

    青少年必读著名作家的故事(启发青少年的科学故事集)

    本丛书重视语文的基础知识训练,选编了常用词语、好词好句、古文名句解读,谚语、歇后语集萃,还有语文趣味故事、语文之谜以及语文大家的故事等等,目的是使中小学生在快乐的阅读中逐步提高语文知识,增加文学素养,为将来走出社会自立人生打下坚实的基础。
  • 中国宫廷史速读

    中国宫廷史速读

    本书将中国古代宫廷中发生的对历史进程有较大影响的事件加以收集整理,做成一专题史。详细地阐述事件的过程和对历史产生的影响。
  • 烽火岛(语文新课标课外必读第六辑)

    烽火岛(语文新课标课外必读第六辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 演绎推导法训练(青少年提高逻辑思维能力训练集)

    演绎推导法训练(青少年提高逻辑思维能力训练集)

    当今时代是一个知识爆炸的时代,也是一个头脑竞争的时代;在竞争日益激烈的环境下,一个人想要很好地生存,不仅需要付出勤奋,而且还必须具有智慧。随着人才竞争的日趋激烈和高智能化,越来越多的人认识到只拥有知识是远远不够的。因为知识本身并不能告诉我们如何去运用知识,如何去解决问题,如何去创新,而这一切都要靠人的智慧,也就是大脑思维来解决。认真观察周围的人我们也会发现,那些在社会上有所成就的人无不是具有卓越思维能力的人。
热门推荐
  • 魔伦大陆

    魔伦大陆

    这是一个魔幻世界:这里有美丽恬静的精灵、嗜血残暴的兽人、阴气森森的亡灵、面目狰狞的恶魔、正气凛然的天使、巨大无比的泰坦……当然,还有传说中的龙;这是冒险者的世界,你可以见到魔法师、战士、弓箭手、牧师、盗贼、刺客……等五花八门的职业;萌呆的史莱姆、强壮的骷髅兵、数量繁多的洞穴人、速度奇快的龙蝇、邪恶的尸巫……构成了缤纷复杂的怪兽系统。各种奇妙的宝物帮助主人公一步步成长为异界至尊,一起来开启魔幻之旅吧!
  • tfboys之爱上你我无怨无悔

    tfboys之爱上你我无怨无悔

    爱上你们我无怨无悔,但求下辈子在爱上你们,我不求你富裕,只求你爱我、相信我。
  • 道已成魔

    道已成魔

    易有太极,始生两仪,两仪为阴阳,阳生仙,阴则生魔。百年前,为求永生不死,十二远古魂兽重回人间,大难降临,精怪横行,天下人纷纷开始修道。昏黄的秋日、破陋的道观、苔藓路、枯叶、三株被种心头的慧识灵草,以及与魔魂一场看似平凡,却极不平凡的际遇,一位少年,就此踏上奇异的修道之路……待屋内那盏油灯灭尽之时,身处黑暗中的少年话声终于响起:“吾修道,非为成仙,乃为入魔!”其身后的魔魂,亦仿佛在同时,睁开眼来……
  • 冥域战神

    冥域战神

    公元1030年,那一段发生的故事被历史所遗忘,那时候天下大乱,魔界冥神即将破印重生;生灵涂炭,仙界无人能与魔王冥神拼死一战。当然,自古邪不胜正,魔妖横行,自然也有降魔之人。看茅山术士陈渝如何打败冥神称霸三界。而这样强大的存在自然也会有柔情一面,自然也会被情所困!看陈渝如何抱得美人归吧!
  • 爱我就好

    爱我就好

    因为我不知道,下辈子是否还能够遇见你。所以,我今生才会那么努力,把最好的给你。友情也好,爱情也罢。有人说,别离就是为了重遇。我不知道那个背叛了爱情的你,是否还会与我重逢……
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 碎裂遗忘重组

    碎裂遗忘重组

    一片大陆,一段古老的故事···一个王都,五个大国···曾经的歃血为盟祭奠着过去的故事,今天的咏叹曲是否是为未来唱着歌···一个民族,一段历史···一个预言,不同的时空···一个白袍老人,一个红衣祭司,他们走过了过去和未来,不变的是那份对爱的期盼···
  • 心婚醉爱

    心婚醉爱

    “那个,咱们有话好好说,别动粗成吗?”看着像狼一样逼近的男人,钱米吓得一张小脸煞白。“你现在没有资格跟我讨价还价。”冷厉的男人一步步将她逼到墙边,如同毒蛇盯住了猎物一般。他是腹黑的A城贵公子,一人之下万人之上,她却只是一个无父无母的孤儿,阴差阳错之下做了豪门的替身千金。第一次见面就踢了他最脆弱的地方,接二连三的让他吃瘪,最后却想要拍拍屁股逃走。“惹了我,你还想全身而退?”冷厉的男人捏着她的手腕,似乎要将她望到心底去。
  • thboys王俊凯之唯你独尊

    thboys王俊凯之唯你独尊

    在除夕夜里,家家户户都在吃团年饭,一个大约十六岁的女孩却伤心过度晕倒在一条公路上,然后,被一个人带走了。。。额,这本小说的女主和我的性格有点差不多,所以更新会有点慢,寒假暑假更新
  • 相遇多么不容易

    相遇多么不容易

    “我喜欢的人有很多,但我爱的人只有一个。网上都说十七八岁爱上的那个人将会是自己这辈子最爱也是最忘不掉的,一开始我不信,但最后我信了。我也曾跟自己打赌我会跟他一直在一起,但最后我输了,输的一塌糊涂。”