登陆注册
8300800000015

第15章 数学教学的趣味之谜推荐(11)

1714年,英国政府宣布,谁能找到确定海上航行船只确切位置的方法,就奖励他两万英镑。英国人哈里森是一位木匠和手工艺人。从1728年开始,他制作出了好几只适合在船上使用的计时器,一只比一只更轻便、更精确。1739年,他又制作出了第一只适合远洋航行用的计时器,但有点复杂,也不十分精确。又经过多年的研究和试验,终于在1761年建造了一只相当精确的计时器,用它计算出来的经度只有几海里的误差。这只计时器有一个用几种不同金属制成的内置平衡装置,它既可抗御船只的颠簸,又能适应温度的变化。但是,哈里森还必须对他的计时器进行多次试验,成功以后才能获得悬赏。1762年,在一次从英国到加勒比海的巴巴多斯的航行中使用了这个计时器。航行历时5个月,哈里森的计时器只慢了15秒。但是,10年以后,英国政府才给哈里森颁发了奖金。这只计时器的出现开辟了航海事业的新纪元。从此,在海上航行的船只可以知道自己的确切位置,并有可能绘制出更加精确的航海图,为找到更加快捷的新航线提供了可能。

96.先抽签后抽签哪个中奖机会大

我们常会碰到这样的问题,10个人抽一个奖,应该说每人获奖的概率是一样的。但有的人认为,先抽合算,后抽不合算。现在我们来分析一下:

第一人抽着奖的概率是110,抽不着奖的概率为910;

第二人抽时只有9个签,有两种可能:①第一人已抽着奖,第二人抽着奖的概率应是110×09=0;②第一人未抽着奖,第二人抽着奖的概率应是910×19=110。

所以第二人抽着奖的概率为:

P=110×09+910×19=110

因此,第二人抽签,不管第一人是否抽到奖,他抽到奖的概率仍是110。

第三人去抽签时还有8张签,也是两种情况:

①前面两个人中已有一个抽着奖,第三人抽着奖的概率应是(110×09+010+19)×08)=0

②第一、二人都未抽着奖,而第三人抽着奖的概率应是:

910×89×18=110

所以第三人抽着奖的概率为:

(110×09+010×19)×08+910×89×89×18=110

因此,不管第一人,第二人是否抽着奖,第三人抽着奖的概率仍为110,所以10人抽签不管先抽还是后抽,抽着奖的概率是一样的,机会是一样的。

97.怎样让客人等吃饭的时间最少

星期天,家里来了客人。爸爸妈妈留客人吃饭,准备烧四个菜、一个汤、两个冷盘。你算算需花多少时间。

取米淘米3分钟,烧饭10分钟,闷饭6分钟,炒菜(甲乙丙菜)各要4分钟、5分钟、6分钟,清蒸菜10分钟,烧一锅汤要10分钟,每次洗锅要0.5分钟,每次盛菜到碗里要1分钟,盛饭配碗筷要2分钟,配制两冷盘各要5分钟、4分钟。这样,大约一个小时以后,客人可以吃饭。

3+10+6+4+5+6+3×0.5+10+10+3+2+5+4=69.5分钟。

如果我们作一个统筹安排,烧饭用电饭锅,烧菜分两只锅炒,先取米淘米烧饭,同时烧汤、配冷菜、清蒸等。可以同时用两只锅炒菜,如下图安排:

这样的话,我们实际用了:3+10+10+5.5+2=30.5分钟,让客人少等半个多小时就能吃到饭。

98.哪些灯还亮着

有一百盏电灯,排成一横行。自左向右,我们给电灯编上号码1,2,3……99,100。每一盏灯由一个拉线开关控制着。最初,电灯全是关着的。

另外,还有一百个学生。第一个学生走过来,把凡是号码是1的倍数的电灯的开关拉了一下;接着第二个学生走了过来,把凡是号码是2的倍数的电灯开关拉了一下;第三个人再走过来,把凡是号码是3的倍数的电灯上的开关拉了一下,如此下去,最后那个学生走过来,把编号能被100整除的电灯上的开关拉一下。这样做过之后,问:“哪些灯是亮着的?”

这简直令人眼花缭乱,不易理出头绪,方法不当就更不得要领。

正确的思考是:由于最初所有的电灯都是关着的,所以被拉了偶数次开关的电灯,仍然是关着的;只有那些被拉了奇数次开关的电灯才是亮着的。因此,人们只须去关心那些被拉过奇数次开关的电灯。

按照问题所规定的法则,编号为n的电灯被拉过几次呢?要看整数n中有多少个正因数。如果n不是平方数,那么n的全部正因数的个数是偶数,这盏灯是关着的。只有当n是平方数时,n的全部正因数个数是奇数,这盏电灯被拉过奇数次,因此它是亮着的。

这样,我们知道了,只有编号为

1,4,9,16,25,36,49,64,81,100的灯是亮着的。

最后举一例,看你是否有了“对称意识”:

……两人把一个棋子,从左到右移动,使它经过一排方格中的每一个格,这排方格的总数是1990,谁把棋子移动到最后一格,谁就获胜。两人轮流,一次移动1至3格。如果你先走,你会赢吗?若再模仿前两个游戏,就会因找不到对称中心而困惑。但如果你有“对称意识”,就会立刻想到在四个格子里,对手先走,你必能获胜。这样,你走第一次时只要使剩余的格数是4的倍数就行了,对手走1格,你走3格;对手走2格,你走2格;对手走3格,你走1格,一直到你把棋子移到最后一格里。

为此,你的第一步只要把棋子移到左边的第二个格子里,(1990÷4=497×4+2)就稳操胜券了。

99.疾病普查怎样进行最省力

我国的医疗机构常进行一些疾病的普查。一种常见的普查方法是验血,通过验血,可以对肝炎、霍乱、血吸虫病等多种疾病作出早期诊断。普通的验血普查方法是:由医疗人员到各个普查点抽取每位接受检查人员的少量血液,做好标记,由医疗人员带回医院或研究机构逐一检查,最后再把检查结果告诉每一位被检查者。这种普查方法虽然很有效,但检查过程费时费力。有没有省时省力一点的办法呢?答案是肯定的。我们举一个例子来说明这个问题。

某次疾病普查需要对上海市1400万居民进行肝炎病毒的验血普查。医疗人员抽取血样带回以后,有两种验血方案可供选择。第一种是普通的方法,即对每份血样逐一进行检查。另一种方案是把所有血样先进行分组,每组100份,从同一组的每份血样中抽取一部分(验血只需要极少量的血样)进行混合,然后再对混合后的血样进行检查。如果检查结果呈阴性,即没有检出肝炎病毒,则表明该组100份血样都无病毒;如果检查结果呈阳性,即检出肝炎病毒,则表明该组100份血样中有某一份或某几份带有病毒,为了查明到底哪一份或哪几份血样带有病毒,必须对这100份血样再逐一检查一遍。那么到底采用哪种方案好呢?

如果采用第一种方案的话,每组血样要做100次检查,而若采用第二种方案,每组血样可能只要做一次检查,也可能要做101次检查。为了作出比较,必须求出采用第二种方案时每组血样需要做的平均检查次数,而这又需要知道两种检查次数出现的可能性有多大。

根据以往资料或试查资料(疾病普查之前常先进行小范围内的试查)估计,肝炎病毒的携带率为0.1%,即平均每1000人中有1人为病毒携带者,或说每份血样中带有病毒的可能性是0.1%。因此每组血样中每份都不带病毒的可能性是:

(1-0.1%)100≈90.48%,

而有一份或几份带有病毒的可能性是1-90.48%=9.52%。因此,采用第二种方案验血,每组血样需要检查的平均次数为:

1×90.48%+101×9.52%=10.52(次),

比采用第一种方案节省了89.48%。如果每验血一次需要花费10元钱的话,采用第一种方案进行检查需要花1.4亿元,而采用第二种方案只需要花1472.8万元,比采用第一种方案节省了1亿多元。

事实上,采用第二种方案进行验血时,并不一定每组含100份血样,也可以每组含50份或150份血样,等等,有兴趣的少年朋友可以试着计算一下,此时又能比采用第一种方案节省多少费用。

100.数字中为何有周期现象

周期现象是普遍存在的。如果你注意一下,就可以发现,数字中也存在着形形色色的周期现象。

例如,自然数经过5次乘方之后,其末位数会出现“重现”或“回归”:2的5次方是32,其末位仍然是2;3的5次方是243,其末位仍然是3;7的5次方,我们即使不算出其结果,也可以肯定它的末位必定还是7;等等。

观察一下从1至9的平方的末位数,可以发现它们组成了一个回文序列:1,4,9,6,5,6,9,4,1。10的平方100末位是0,而此后各数的平方的末位数又是1,4,9,6,5,6,9,4,1。整个自然数的平方的末位数,始终在那儿兜圈子,循环反复,以至无穷。而这些反复出现的周期,中间是以0来分界的。

人们还发现,一切平方数的根数只能是1,4,7,9这四个数字,不可能是其他数字。这里所称的“根数”,就是把一个正整数的各位数字统统相加起来,求出其和数,如果这个和数比9大,就一直减去9的整倍数,直至余数小于或等于9为止。例如,135的根数是9,246的根数是3,等等。

利用上述知识,有时很容易判别一个数究竟是不是平方数。譬如说,98765432123456789是不是一个平方数?我们不妨查一下它的根数,是8,而不是1,4,7,9中的一个,于是就可以肯定它不是一个完全平方数。

一切平方数的根数不仅具有如上的特性,而且当完全平方数依序递增时,其根数也是以1,4,9,7,7,9,4,1的回文序列反复出现的。不过,这一次是以9,而不是用0来作为各个周期的分界。下面举些实例来说明:

100(10的平方)的根数为1;

121(11的平方)的根数为4;

144(12的平方)的根数为9;

169(13的平方)的根数为7;

196(14的平方)的根数为7;

225(15的平方)的根数为9;

256(16的平方)的根数为4;

289(17的平方)的根数为1;

324(18的平方)的根数为9;——周期的分界标志

361(19的平方)的根数为1;——下一周期的开始

……

平方数的这些性质,不仅有趣,而且有很大的实用价值。灵活运用这些性质,我们就可掌握许多速算的窍门。

101.古希腊三大几何问题是什么

传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。这就是古希腊三大几何问题之一的倍立方体问题。用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。另外两个着名问题是三等份任意角和化圆为方问题。

古希腊三大几何问题既引人入胜,又十分困难。问题的妙处在于它们从形式上看非常简单,而实际上却有着深刻的内涵。它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。这一过程中隐含了近代代数学的思想。经过2000多年的艰苦探索,数学家们终于弄清楚了这3个古典难题是“不可能用尺规完成的作图题”。认识到有些事情确实是不可能的,这是数学思想的一大飞跃。

然而,一旦改变了作图的条件,问题则就会变成另外的样子。比如直尺上如果有了刻度,则倍立方体和三等份任意角就都是可测量的了。数学家们在这些问题上又演绎出很多故事。直到最近,中国数学家和一位有志气的中学生,先后解决了美国着名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。

102.博弈论是什么

下棋已成为许多人茶余饭后乐此不疲的一项业余爱好。既要对弈,就必有胜负。赢棋的奥妙是一个很值得研究的问题。而研究这类问题的学问就是博弈论,又叫对策论。

博弈论是20世纪20年代才发展起来的新兴学科,由冯·诺曼等人的研究开始,最先被用于考虑经济问题和军事问题,之后也被用解决一些社会问题。下面用一个简单的例子来看看是如何考虑问题的。

例如,两人轮流在国际象棋棋盘的空格内放入“相”棋,一方为黑棋,一方为白棋。当任何一方放“相”棋时,要保证不被对方已放入的“相”吃掉,谁先无法放棋子谁为输者。问谁为输者?(国际象棋棋盘为8×8格的方形棋盘,“相”的走法为斜飞,格数不限)

同类推荐
  • 组织:当代理论与实践

    组织:当代理论与实践

    对于当今世界的组织来说,如果它们是企业,就必须为了竞争而适应和创新;如果它们是公共服务的提供者,就必须为了满足社会不断增加的期望而适应和创新。有一点已经变得越来越明显了,那就是传统的组织形式并不能为达到这些要求而提供很好的帮助,于是人们便尝试起了一系列的其他形式。这些其他形式通常被称为“新组织形式”。
  • 新课程与教育智慧(教育篇)

    新课程与教育智慧(教育篇)

    本书集济南高新区第一实验学校优秀教师在教育与教学两方面的心得与成功经验为一体,为其他学校及教师在教学和教育方面提供了很好的参考和指导。
  • 决胜中考招招灵

    决胜中考招招灵

    在每个人的人生道路上,总会有几个重要的人生关口。在初中阶段,一个最大、最重要的“坎儿”,就是中考。望子成龙是许多家长共同的目标,为了使孩子能拥有良好的修养、光辉的前程,能立足于未来竞争越来越激烈的社会,即使中考只是建立在九年义务教育基础上的选拔性考试,但对家长来说,中考却是孩子人生的第一个转折点,是一次非常重要的考试。对此,一位家长这样说道: “如今,高考门槛降低了,录取率逐年增高,对于考生年龄又放开了,年纪再大也能考,机会很多。可中考就不一样了,一锤子买卖,考砸了,也没有什么补救的机会。所以,一定要帮孩子把好中考关。
  • 悲惨世界(语文新课标课外读物)

    悲惨世界(语文新课标课外读物)

    现代中、小学生不能只局限于校园和课本,应该广开视野,广长见识,广泛了解博大的世界和社会,不断增加丰富的现代社会知识和世界信息,才有所精神准备,才能迅速地长大,将来才能够自由地翱翔于世界蓝天。否则,我们将永远是妈妈怀抱中的乖宝宝,将永远是温室里面的豆芽菜,那么,我们将怎样走向社会、走向世界呢?
  • 嘘,恐怖的高三开始啦!

    嘘,恐怖的高三开始啦!

    《爆笑日记:嘘,恐怖的高三开始啦!》用日记的形式,轻松幽默地展示了高三备考这个沉重的话题。$$整整一年,作者都将目光锁定在女儿的备考上。从踏入高三之日起:一直记到高考录取结束。不仅用漫画式的笔调描摹了女儿的成绩排名、睡眠饮食、心理问题、内分泌紊乱等方方面面,还生动地记叙了一个被高考弄得抓狂的母亲的各种固态。
热门推荐
  • 权少来袭:老婆,要抱抱!

    权少来袭:老婆,要抱抱!

    她爱了他十年,却始终得不到回应。在他牵着别的女人的手说要结婚的时候,她知道自己应该放手了。可为什么她用了三年已经觉得忘记他的时候,他又霸道的不让自己开始新生活?“黎若昕,我允许你放弃我了吗?”他红了眼,直接从婚礼上抢人。
  • 光影神帝

    光影神帝

    三年不飞,一飞冲天。三年不鸣,一鸣惊人。看我龙傲天如何成为神界之帝的。
  • 定损员的异样技能

    定损员的异样技能

    单飞是钣喷工,做事故车维修有六年了,水往低处流,人往高处走,机缘巧合之下,他脱下工装换西装,成了保险公司的事故定损员。美好的生活才开始,查勘了第一个现场却恶梦连连,老妈听说事情起因后找了神神叨叨的舅舅看了一个水碗:阳气太矮,命中带阴,适合吃神仙饭!而喝了老舅鬼画符的水也没什么特别之处,直到有一天,单飞发现,自己居然看到了一些不可思议的东西,接下来的工作让他自己都觉得毛骨悚然,却又借着这个改变让自己平步青云
  • 天启圣痕

    天启圣痕

    “混沌生于圣痕,使徒降临希望。”首支前往圣域的舰队覆灭后,传回来的只有这条讯息。而使徒,作为天使中作为空壳的存在,一向是最弱的阶级。可时间最后印证了这逐渐成为传说的讯息,来自不同世界的灵魂填补了使徒的空壳,而他们的任务,就是前往圣痕。来自地球的召唤师将以机甲的形态和星港文明的灵卫在一起,共同在命运指引下前往最终的归宿。
  • 听天使唱歌

    听天使唱歌

    人活得久了,就越想抓住一些可以让自己找到存在感的事物来证明自己的存在,那些虚浮不定的东西成为最后的稻草,就算无用也要死命地抓住。金钱、美色、权利,最虚也是最真的东西,引得无数人飞蛾扑火前仆后继葬身黑暗。她笑,却抖不落自己一身尘埃。止不过于这些悲哀,也是黑暗的中心......
  • 英雄联盟之电竞追梦自由

    英雄联盟之电竞追梦自由

    不一样的世界,一样的英雄联盟。普通小城走出的少年杨烨,将会给这个世界带来巨大的波澜,上演不一样的人生百态。给你最纯正的感受
  • 他是个人物

    他是个人物

    中医药大学差点连毕业证都拿不到的陆风,偶然得到一本奇书,登上他的逆袭之路!
  • 美人双生:一世清欢

    美人双生:一世清欢

    这年云京百姓中盛传的便是尚书府中失踪十余年的小姐被寻回,人人皆道此女大难已过必有后福。?后福?如果与一群整日勾心斗角的女人何处不相逢也算是的吧,那她以前可真是逍遥似神仙了。?也罢,此生她本就只求护得那人一世长安便可。?可从几时起谁又能告诉她,为何她无心求权,却里权势的距离越来越近,为何会沉醉于那妖人浅笑而呼吸微滞。?她非莲,手执三尺染血青锋,杀出这天地间自己的一尺三寸。?她非凰,却非命运所能摆布,更惹得那般自傲之人为之倾心。?美人多面,谁是她真实的容颜。?时过境迁,能否再度榆下清欢。?
  • 许世安然

    许世安然

    他说他叫莫世安,是希望世界可以安宁。她说她叫许然,是希望能许一人安然。他说遇见她,他的世界就不再安宁。她说遇见他,她便希望能许他一生安然。那年,她遇见他,他遇见她。遇见彼此,便是最好的青春。
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)