登陆注册
8300700000007

第7章 数学教学的趣味运用推荐(1)

1.流传久远的算术趣题

古代俄罗斯民间流传着这样的算术题:

“路上走着七个老头儿,

每个老头儿拿着七根手杖,

每根手杖上有七个树杈,

每个树杈上挂着七个竹篮,

每个竹篮里有七个竹笼,

每个竹笼里有七只麻雀,

总共有多少麻雀?”

老头儿数是7,手杖数是77=49,树杈数是777=497=343,竹篮数是7777=3437=2401,竹笼数是77777=24017=16807,麻雀数是777777=168077=117649。总共有十一万七千六百四十九只麻雀。七个老头儿能提着十一万多只麻雀遛弯儿,可真不简单啊!若每只麻雀按20克算,这些麻雀有2吨多重呢!

2.惊人的老鼠繁殖

一对老鼠原也没什么稀奇,但谈到它们的繁殖能力,确实叫人大吃一惊。

这是日本古代一本有名的算术书《尘劫记》里的题目。

“正月里,有2只大老鼠生了12只小老鼠,这两代共计是14只。

这些长大了的老鼠在二月里互相成亲,每对(2只)都生了12只小老鼠,连大带小共计是98只。三月里又有49对老鼠各生下12只小老鼠。这四代共计是686只。

这样,每月一回,父母、儿女、孙子、曾孙子、子子孙孙,总是每对生12只,那么12个月里将变成多少只呢?”

经过计算,是二百七十六亿八千二百五十七万四千四百零二只。这是多么大的数字,又是多么惊人的繁殖能力呀!

3.全体数字向我朝拜

小朋友,你们听说过维纳这个名字吗?诺伯特·维纳是20世纪最伟大的数学家之一,如今被广泛应用的数学分支信息论、控制论都是由他奠定基础的。

维纳有着非常高的天资。据说,他3岁就能读会写,7岁时就能阅读和理解着名诗人和科学家高深的着作。他大学毕业的时候才14岁,过了几年,他又获得了世界闻名的美国哈佛大学的博士学位。

在授予维纳博士学位的仪式上,来了很多客人。其中有一位嘉宾看到年轻的维纳,好奇地问他:“你今年多大啊?”

维纳虽然获得了博士学位,但毕竟还是个孩子,听别人这样问他,不禁就想当众显示一下自己的才智。他说:“我今年的岁数,连续乘三次,是个四位数;连续乘四次,是个六位数;两个数正好是把0、1、2、3、4、5、6、7、8、9全部用上去,而且既没有重复,又没有遗漏。这意味着,全体数字都向我朝拜,预祝我将来在数学领域里干出一番大事业来!”

维纳这么一说,好像给所有在座的嘉宾出了一道智力题一样,大家都在纷纷议论,维纳到底有几岁。其实,这个题目说难也不难。只要多试几次,就可以了。假定维纳的年纪是在20岁左右,那么我们可以把20上下的数字都来试一试,看看是不是符合这些条件。我们看到,222222等于10648,已经是五位数,所以不合条件,可以排除。而17171717等于83521,又小了,不符合乘四次是个六位数的条件。这样一来,答案就在18、19、20、21之间了。202020=8000,19191919=130321,21212121=194481,这几个结果里都有重复的数字,所以也不合题意,最后就剩下18了。我们来看看:

181818=5832

18181818=104976

果然没有重复的数字。所以,维纳当时应该是18岁。

4.韩信暗点兵

我国汉初军事家韩信,神机妙算,百战百胜。传说在一次战斗前为了弄清敌方兵力,韩信化装到敌营外侦察,隔着高大寨墙偷听里面敌将正在指挥练兵。

只听得按3人一行整队时最后剩零头1人,按5人一行整队时剩零头2人,7人一行整队时剩零头3人,11人一行整队时剩零头1人。据此韩信很快算出敌兵有892人。于是针对敌情调兵遣将,一举击败了敌兵。这就是流传于民间的故事“韩信暗点兵”。

“韩信暗点兵”作为数学问题最早出现在我国的《孙子算经》中。原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何子”

用现代话来说:“现在有一堆东西,不知它的数量。如果三个三个地数最后剩二个,五个五个地数最后剩三个,七个七个地数最后剩二个,问这一堆东西有多少个?”

该书给出的解法是:

N=702+213+152-2105

这个解法巧妙之处在于70、21、15这三个数。

70可以被5和7整除,并且是用3除余1的最小正整数,因此270被3除余2;

21可以被3和7整除,并且是用5除余1的最小正整数,因此321被5除余3;

15可以被3和5整除,并且是用7除余1的最小正整数,因此215被7除余2。

这样一来,702+213+152被3除余2,被5除余3,被7除余2。这个数大于100,容易算出3、5、7的最小公倍数是105。从这个数中减去两倍的105,不会影响被3、5、7除所得的余数。

N=702+213+152-2105=23

仿照《孙子算经》中“物不知数”问题的解法,来算一算“韩信暗点兵”:N=3851+2312+3303+2101-1155=2047-1155=892

“韩信暗点兵”在中国古代数学史上有过不少有趣的别名,如“鬼谷算”、“秦王暗点兵”、“剪管术”、“隔墙算”等。

这就是着名的“中国剩余定理”或“孙子剩余定理”。

5.到底有多少兔子

你知道澳大利亚吗?它位于南半球,是大洋洲的一个国家,它的国土全都被海洋包围着。我们今天先讲的是一个澳大利亚和兔子的故事。

本来,澳大利亚没有兔子,1859年,一家动物园引进了24只兔子,供人们观赏。可是几年后的一天,动物园失火了,关兔子的栅栏被烧毁,兔子全都跑了出来,变成了野兔。谁也没有想到,兔子繁殖的速度竟会是这样惊人,短短几十年的时间,就达到了40多亿只。它们破坏庄稼,和牛羊争吃牧草,造成的损失十分巨大,使人们大伤脑筋。尽管人们采取了大量措施,可是兔子的祸害还是不见减轻。

为什么兔子会繁殖得这么快呢?我们再讲一个故事,你就会知道了。12世纪,意大利有位叫做斐波那契的数学家写了一本《算盘书》的着作,他在里面说明了怎样应用阿拉伯数字,和如何用它们进行加减乘除计算和解题。在其中,他通过一个有趣的故事,出了一道题:“如果一对兔子每月能生1对小兔子,而每对小兔子在它出生后的第3个月里,又能开始生1对小兔子,假如每只兔子都能活下来,那由第一对兔子开始,1年后能有多少对兔子?”从第一个月开始,兔子的对数就依次为1,1,2,3,5……,可以看出,从第三项开始,每一项都等于前两项之和,而一年后,就是1+(1+2)+(1+1+2)+(1+1+2+1+1+2)……一直加到第十二个月,那么,共有兔子144对,共有288只,而如果按这个规律再往下写下去,增加的速度是特别惊人的,到第571个月,就是说到第47年的时候,一共有多少兔子了呢?这个数目要达到96后面有117个零!如果真到那个时候,这些兔子恐怕地球都装不下了呢!

6.鸡兔同笼

你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代着名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。

这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。

7.春联中的数学

清乾隆五十年,朝廷为了表示国泰民安,曾邀集了全国有声望的老人逾千人,为他们举行了一次盛大寿宴。在宴会上,乾隆看到一位老寿星,鹤发童颜,神采奕奕,一问竟是与会者中的最长者,非常高兴,就以这位寿星的岁数为题,说出上联。座中一位博学多才的大臣纪晓岚即时对出了下联。

乾隆的上联是:花甲重开,又加三七岁月。

纪晓岚的下联:古稀双庆,更多一度春秋。

那这位寿星到底年岁几何呢?

上联中的“花甲”是指60岁,“花甲重开”就是两60,“三七岁月”是21岁,即602+21=141。

下联中的“古稀”指七十岁,“古稀双庆”就是两个70岁,“一度春秋”就是1年,即702+1=141。

8.米兰芬算灯

李汝珍,清代人,是个“学无所不窥”的才子,可能是学问钻研多了,所以官场上却甚不得意。他写了好几本书,《镜花缘》是流传最广的一本。此书中描写了一位精通算学的才女“矶花仙子”名叫米兰芬。

米兰芬和众姐妹在宗伯府聚会,来到小鳌山楼上观灯。楼上的灯形状有两种,一种灯是上面三个大球,下缀六个小球,一种灯是上面三个大球下面十八个小球。楼下的灯也有两种,一种是一个大球缀二个小球,一种是一大球缀四个小球。知道楼上有大灯球396个,小灯球1440个,楼下有大灯球360个,小灯球1200个。

才女们要米兰芬计算,楼上楼下的四种灯各有多少盏?

米兰芬说:“以楼下论,将小灯球数折半,得600,减去大灯球数360,即得缀四个小灯球的灯数为240,用360减240得120,即得缀二个小灯球的灯数为120。此用‘鸡兔同笼’之法。”用同样的方法算楼上灯数:“以1440折半,得720,720-396=324,324÷6=54。得缀十八个小灯球的灯数为54。用396-543=234,234÷3=78。即缀六个小灯球的灯数为78。”

这里说的“鸡兔同笼”法,是指的我国古代的一种类型题目,比如在一个笼中关有鸡与兔,数头有100个,数脚有240只。问鸡、兔各有多少?

对此题,有一个简单巧妙的算法,就是:如果让鸡都缩起一只脚,“金鸡独立”站着;让兔子全部抬起二只前腿,只用二只后腿站着,这时,再数脚数,就应是240除以2,得120只脚。

如笼中全是鸡,由于此时数鸡时,每只鸡都是一头一脚(另一脚缩起来了)。故100只鸡应只有100只脚,现在却有120只脚,多的20只脚是那儿来的呢?原来每只兔子都要多数1只脚,这就说明兔子数是20,而鸡数则是80。

现在你明白了米兰芬的算法了吧!比如说楼下的灯,一大球下缀二小球,就相当于“一只鸡有二只脚”,一大球下缀四小球就相当于“一只兔有四只脚”。所以,用“鸡兔同笼”之法就算清楚了。

至于楼上的灯,小球数折半,就相当于把灯改制成“每灯三个大球,下缀三个小球”和“每灯三个大球,下缀九个小球”这两种。如果都是前一种灯,则大小灯球数应相等。现小球数为720(=1440÷2),大球数396,多出324个小球。是因为每盏第二种灯小灯球多出6个的原因,从而用324÷6=54,即其中有54盏第二种灯,第二种灯共用大灯球162个,故第一种灯用大灯球234个,除以3得78,就是第一种灯数了。

朋友,如果换了你来解决这道题,你又会怎么做呢?

9.铺地锦

前面已经介绍了,米兰芬是《镜花缘》里的一个“才女”,精通数学,在书中有不少她解数学题的故事。

有一位才女要考考米兰芬:“有一套金杯,大小一共9只,共用126两黄金打造,这些杯子从小到大每只都比前一只重同样多,且第二只是第一只重量的2倍”,她问米兰芬,“你能算出杯重吗?”

米兰芬说:“这要用‘差分之法’。”并算出这9只杯子重量依次为2两8钱、5两6钱、8两4钱、11两2钱、14两、16两8钱、19两6钱,22两4钱和25两2钱。

这里“差分之法”实际上就是现在的等差数列的计算方法。由于从第二个杯子起,各个杯子的重量分别是最小杯的2、3、4、5、6、7、8、9倍,所以,这些杯子的重量是最小杯子的

1+2+3+4+5+6+7+8+9=9(9+1)÷2=45(倍)。

于是,最小的杯子重量为126÷45=2.8(两),以后再算出各个杯子的重量。

又有一位才女指着一张圆桌,问米兰芬:“你能算出它的周长吗?”

米兰芬说可以,她叫人拿尺量得圆桌直径为3尺2寸,然后画了一个“铺地锦”:

同类推荐
  • 影响你一生的100个名胜故事

    影响你一生的100个名胜故事

    有一种东西叫做钻石,如天上的星星,风雨的岁月和空间,凝固成人类精神的永恒,它跨越了,国界、语言、年龄。“注音版影响孩子一生的名著”系列图书,每一本都是你生命中不可不读的经典。
  • 敢于品尝苦涩人生(指导学生心理健康的经典故事)

    敢于品尝苦涩人生(指导学生心理健康的经典故事)

    每个人都在梦想着成功,但每个人心中的成功都不一样,是鲜花和掌声,是众人羡慕的眼神,还是存折上不断累积的财富?其实,无论是哪一种成功,真正需要的都是一种健康的心理。有了健康的心理才是成功的前提与保证,在人的一生中,中学是极其重要的一个阶段,心理健康对以后的健康成长非常重要。
  • 归纳类推法训练(青少年提高逻辑思维能力训练集)

    归纳类推法训练(青少年提高逻辑思维能力训练集)

    当今时代是一个知识爆炸的时代,也是一个头脑竞争的时代;在竞争日益激烈的环境下,一个人想要很好地生存,不仅需要付出勤奋,而且还必须具有智慧。随着人才竞争的日趋激烈和高智能化,越来越多的人认识到只拥有知识是远远不够的。因为知识本身并不能告诉我们如何去运用知识,如何去解决问题,如何去创新,而这一切都要靠人的智慧,也就是大脑思维来解决。认真观察周围的人我们也会发现,那些在社会上有所成就的人无不是具有卓越思维能力的人。
  • 地心游记(语文新课标课外必读第四辑)

    地心游记(语文新课标课外必读第四辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 三十六计(语文新课标课外必读第十二辑)

    三十六计(语文新课标课外必读第十二辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
热门推荐
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 厉少的千娇宠儿

    厉少的千娇宠儿

    好你个江逸汝三年前,你为了钱从我身边离开,三年后你居然还敢回来,既然回来了,我就要好好地陪你玩玩。最后知道离开他的原因,他用了各种方法让她回到他身边,一纸契约,将她绑定在他身边。最后她才发现自己真的离不开他了。厉少的粉丝群创立了欢迎小书粉们跳坑群号码:559249613
  • 青梅杠上竹马

    青梅杠上竹马

    “安阳,你干什么呢?”李梓蒙红着脸,脸上不知是愤怒还是害羞,“你不知道吗,这叫挑逗,知道吗,挑逗!”安阳厚着脸皮狡辩。一次偶遇,竟让两个小学同学相恋,浪漫生活中的甜蜜,不管是什么摸头杀,壁咚,床咚都试了遍。终于有一天,安阳问出了一个埋藏在心里很久的问题,“你喜欢我哪一点?”“真的要回答?”“嗯嗯。”“离我远点”“......”
  • Daisy Miller

    Daisy Miller

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 夏末花开:愿你还在那里

    夏末花开:愿你还在那里

    已完结《恶魔公主的复仇》,简介:“卫先生,我觉得你有必要和我这个合法妻子解释一下那位天天缠着你的王小姐是怎么回事”,“卫夫人,你作为我的合法妻子,你应该努力掐掉我身边的烂桃花”,“我有权力拒绝!”,可是翌日某夫人单枪匹马“杀”到王小姐面前说道:“王小姐,你所心仪的卫先生一不小心就在民政局拿到了有他照片的红本子,现下已为有妇之夫,如果你还要纠缠,希望你接的起我给你的律师函。”明明夏沫有宏图大志,想要问鼎全国,不了被某位不知廉耻的总裁缠上身,闪婚不说还爬床……“卫先生,你这样那些公司高层可知道?”,“知道如何,不知道又如何他们管得着?”,“……”【此属小甜文,不会虐~】
  • 修仙潜在学院

    修仙潜在学院

    他出生于农村平穷家庭,因为出生时的奇异,从弱小慢慢遇到奇遇,通过不断的努力和坚强的意志成功成仙
  • 神之仇

    神之仇

    这是一个充满奇迹的世界,每个人都可以拥有战宠,或战武,人类用玄戒来捕获他们,每个战宠都可以与主人合体,而战武只能当武器使用,并使主人学会一个技能。而一个人只能得到九只战宠或战武,所以,拥有强力战宠和战武的人,就可以拥有极高的地位。整个世界被分为了五个大陆,分别是东方青龙大陆,北方朱雀大陆,南方白虎大陆,西方玄武大陆和中央麒麟大陆,而传奇的故事则是在青龙大陆发生的。
  • 拿破仑成功之道全书

    拿破仑成功之道全书

    希尔从事美国成功人士的研究工作,并利用私谊写信给美国政界、工商界、科学界、金融界等取得卓越成绩的高层人士,积极与他们结识。在以后的20年间,已经获得博士学位。拿破仑·希尔访问了包括福特、罗福斯、洛克菲勒、爱迪生、贝尔在内的500多名成功人士,并进行深入的研究。本书是对拿破仑希尔成功学的详细阐释。
  • 炮灰通房要逆袭

    炮灰通房要逆袭

    作为一个被卖了六次的贱籍奴婢,小花已是麻木了。上辈子是个炮灰通房,被杖毙身亡,这辈子洗心革面老实做人,最后还是落了一个被发卖的下场。这藩王府的福利似乎不错?最主要退休福利很好啊!为此小花决定留在这景王府里好好当差。可惜,终究抵不过造化弄人……从炮灰通房到一代宠妃,这条路有点长……
  • 绝世倾城小王妃

    绝世倾城小王妃

    慕雪歌盗个慕,穿个越,架个空,有那么难吗?魂穿的人长得还丑还废材,慕雪歌真心的倒霉。斗心机婊,闹黎王府,蹲地牢,恶作剧,美男乖乖送上门。哈哈哈哈哈哈~~