登陆注册
8186600000011

第11章 数学教学的趣味题型推荐(6)

以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。

根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,这又该如何推论?请你们试着自己推论一下。]

65.两张小纸片

Q先生和S先生、P先生在一起做游戏。Q先生用两张小纸片,各写一个数。这两个数都是正整数,差数是1。

他把一张纸片贴在S先生额头上,另一张贴在P先生额头上。于是,两个人只能看见对方额头上的数。

Q先生不断地问:你们谁能猜到自己头上的数吗?S先生说:“我猜不到。”P先生说:“我也猜不到。”S先生又说:“我还是猜不到。”P先生又说:“我也猜不到。”S先生仍然猜不到,P先生也猜不到。S先生和P先生都己经三次猜不到了。可是,到了第四次,S先生喊起来:“我知道了!”P先生也喊道:“我也知道了!”

问:S先生和P先生头上各是什么数?

[答案:“我猜不到。”这句话里包含了一条重要的信息。

如果P先生头上是1,5先生当然知道自己头上就是2。5先生第一次说“猜不到”,就等于告诉P先生,你头上的数不是1。

这时,如果S先生头上是2,P先生当然知道自己头上应当是3,可是,P先生说“猜不到”,就等于说:S先生,你头上不是2。

第二次S先生又说猜不到,就等于说:P先生头上不是3,如果是这样,我头上一定是4,我就能猜到了。

P先生又说猜不到,说明S先生头上不是4。S先生又说猜不到,说明P先生头上不是5。P先生又说猜不到,说明S先生头上不是6。

S先生为什么这时猜到了呢?原来P先生头上是7。S先生想:我头上既然不是6,他头上是7,我头上当然是8啦!

P先生于是也明白了:他能从自己头上不是6就能猜到是8,当然是因为我头上是7!

实际上,即使两人头上写的是100和101,只要让两人对面反复交流信息,反复说“猜不到”,最后也总能猜到的。

这类问题,还有一个使人迷惑的地方:一开始,当P先生看到对方头上是8时,就肯定知道自己头上不会是1,2,3,4,5,6;而S先生也会知道自己头上不会是1,2,3,4,5。这么说,两人的前几句“猜不到”,互通信息,肯定是没用的了。可是说它没用又不对,因为少了一句,最后便要猜错。]

66.两个机灵的朋友

菲德尔工长有两个聪明机灵的朋友:S先生和P先生。

一天,菲德尔想考考他们,于是,他便从货架上取出11种规格的螺丝各一只,并按下面的次序摆在桌子上:

M8×10M8×20

M10×25M10×30M10×35

M12×30

M14×40

M16×30M16×40M16×45

M18×40

这里需要说明的是:M后的数字表示直径,×号后的数字表示长度。

摆好后,他把S先生、P先生叫到跟前,告诉他们说:

“我将把我所需要的螺丝的直径与长度分别告诉你们,看你们谁能说出这只螺丝的规格。”

接着,他悄悄把这只螺丝的直径告诉S先生,把长度告诉P先生。

S先生和P先生在桌子前,沉默了一阵。

S先生说:“我不知道这只螺丝的规格。”

P先生也说:“我也不知道这只螺丝的规格。”

随即S先生说:“现在我知道这只螺丝的规格了。”

P先生也说:“我也知道了。”

然后,他们都在手上写了一个规格给菲德尔工长看。菲德尔工长看后,高兴地笑了,原来他们两人写的规格完全一样,这正是自己所需要的那一只。

问:这只螺丝是什么规格?

[答案:对于聪明的S先生来说,在什么条件下,才会说“我不知道这只螺丝的规格?”显然,这只螺丝不可能是M12×30、M14×40、M18×40。因为这三种直径的螺丝都只有一只,如果这只螺丝是M12×30,或M14×40,或M18×40,那么聪明而且知道螺丝直径的S先生就会立刻说自己知道了。

同样的道理,对于聪明的P先生来说,在什么条件下,才会说“我也不知道这只螺丝的规格“?显然,这只螺丝不可能是M8×10、M8×20、M10×25、M10×35、M16×45。因为这五种长度规格的螺丝各只有一只。

这样,我们可以从11只螺丝中排除了8只,留下的是三种可能性:M10×30、M16×30、M16×40。

下面,可以根据S先生所说的“现在我知道这只螺丝的规格了”这句话来推理。用推理形式来表示:如果这只螺丝是M16×30或M16×40,那么仅仅知道螺丝直径的S先生是不能断定这只螺丝的规格的,然而,S先生知道这只螺丝的规格了,所以,这只螺丝一定是M10×30。]

67.传教士和野蛮人

三名传教士和三个野蛮人同在一个小河渡口,渡口上只有一条可容两人的小船。问题的目标是要用这条小船把这六个人全部渡到对岸去,条件是在渡河的过程中,河两岸随时都保持传教士人数不少于野蛮人的人数,否则野蛮人会把处于少数的传教士吃掉。这六个人怎样才能安全渡过去?

[答案:可以这样渡河

1.一名牧师和一个野蛮人过河;

2.留下野蛮人,牧师返回;

3.两个野蛮人过河;

4.一个野蛮人返回;

5.两名牧师过河;

6.一名牧师和一个野蛮人返回;

7.两名牧师过河;

8.一个野蛮人返回;

9.两个野蛮人过河;

10.一个野蛮人返回;

11.两个野蛮人过河。

这里关键的一步是第6步,许多人不能解决此题,就是没有想到这一步。]

68.大小灯球

《镜花缘》写了一个才女米兰芬计算灯球的故事——

有一次米兰芬到了一个阔人家里,主人请她观赏楼下大厅里五彩缤纷、高低错落、宛若群星的大小灯球。

主人告诉她:“楼下的灯分两种:一种是灯下一个大球,下缀两个小球;另一种是灯下一个大球,下缀四个小球。楼下大灯球共360个,小灯球1200个。”

主人请她算一算两种灯各有多少。

[答案:一个大灯球下缀两个小灯球当是鸡,一个大灯球下缀四个小灯球当是兔。

(360×4-1200)÷(4-2)=240÷2=120(一大二小灯的盏数)

360-120=240(一大四小灯的盏数)]

69.四个孩子赛跑

A、B、C、D四个孩子在操场上赛跑,一共赛了四次——其中A比B快的有三次,B比C快的也有三次,C比D快的也是三次。或许大家会想到D一定是最慢。可事实上,在这四次中,D也比A快三次。

这是怎样一种情况呢?

[答案:假如四次的名次分别为:

1.A、B、C、D;

2.B、C、D、A;

3.C、D、A、B;

4.D、A、B、C。

在1、3、4次A比B快,在1、2、4次B比C快,在1、2、3次C比D快,而在2、3、4次D就比A快。]

70.国会竞选

国会议员竞选开始时,H曾为参加或不参加竞选的问题发愁了很久。想来想去拿不定主意,最后他想,还是听命于天吧。于是向两位高明的算命先生A、B请教,他们分别作了回答。

A讲完他的话之后,说:“我所说的有60%正确。”

B讲完他的话之后,说:“我所说的只有30%正确。”

结果,他就依照B的占卦去办了。

为什么呢?

[答案:因为按B的相反意见去办,其正确率可达70%。

B的判断只有30%正确,自然70%就是不正确的了。在两者选一的条件下,违背他说的意见去办,就可以有70%的正确性。而A的判断只有60%是正确的,相比之下,正确率当然要小了。

对某种判断,如果从反面去推究,往往会得出意想不到的结果。]

71.耕地能手和播种能手

新德里郊区有个庄园主,雇了两个小工为他种小麦。其中A是一个耕地能手,但不擅长播种;而B耕地很不熟练,但却是播种的能手。庄园主决定种10公亩地的小麦,让他俩各包一半,于是A从东头开始耕地,B从西头开始耕。A耕地一亩用20分钟,B却用40分钟,可是B播种的速度却比A快3倍。耕播结束后,庄园主根据他们的工作量给了他俩100卢比工钱。

他俩怎样分才合理呢?

[答案:每人一半,各拿50卢比。因为不论每个人干活速度如何,庄园主早就决定他们两人“各包一半”。因此他们二人的耕地、播种面积都是一样的,工钱当然也应各拿一半。]

72.牛津学者的难题

随身带着20卷亚里士多德的书籍的牛津学者,向自己的同伴提出难题时,他说:

“不知什么缘故,我一直在思索用奇妙的咒符来防备瘟疫和其他凶祸的问题,这种极端玄妙的物件与幻方有关。但我昨夜发明的小小难题,对大家不会有太大的困难。不过,这道题,不需要太大的耐心。”

接着,学者拿出一个正方形,如下图所示。他要人们沿图上的直线裁开,分成四块,然后重新加以拼合,再一次得到正确的幻方,其每行、每列及两条对角线上的和数都等于34。

115512

81049

116162

143137

[答案:如图所示,按下列方法将正方形分为4块再拼成正方形,每行、每列及每条对角线上的和都是34。

111616

81439

155122

104137]

73.泰巴的难题

也许,任何一个难题也没有像这道题那样激起这么多的欢乐,这是泰巴旅店老板哈利·裴莱提出的。他一路上陪着这一伙朝圣者,有一次他把同伴一齐叫来,说:

“我的可敬的老爷们,现在轮到我来稍微启迪你们的心智。我给你们讲一个难题,它会便你们大伤脑筋。但毕竟,我想你们最后会发现,它很简单。请看,这儿放着一桶绝妙的伦敦白啤酒。我手里拿着两个大盅,一个能盛五品脱,另一个能盛三品脱。请你们说说看,我怎样斟酒,使得每盅都恰有一品脱?”

回答这个问题,不许使用任何别的容器或设备,也不许在盅子上作记号。

[答案:由索维尔克小旅店“泰巴”快乐的东家提出的难题,比其他朝圣者的难题更通俗。

“我看,我的殷勤的老爷们,”他扬声说,“太妙啦,我的小小诡计把你们的头脑弄糊涂了。要在这两个盅子里都斟上一品脱酒,不许用其他任何容器帮助,这对我来说是毫不困难的。”

于是,泰巴旅店的老板开始向朝圣者们解释,怎样完成这最初认为简直不能解决的问题。他立刻把两个盅子都斟满,然后将龙头开着让桶里剩下的啤酒都流到地板上(对于这种做法,同伴们坚决提出抗议。但机智的老板说,他确切知道原来桶内的啤酒量比八品脱多不了多少。请注意,流尽的啤酒量不影响本题的解)。他再把龙头关上;并将三品脱盅子内的酒全部倒回桶中,接着把大盅子的酒往小盅子倒掉三品脱,并把这三品脱酒倒回桶中,他又把大盅剩下的两品脱酒倒往小盅,把桶里的酒注满大盅(五品脱),这样,桶里只剩一品脱。他再把大盅的酒注满小盅(只能倒出一品脱),让同伴们喝完小盅里的酒,然后从大盅往小盅倒三品脱,大盅里剩下一品脱,又喝完小盅的酒,最后把桶里剩的一品脱酒注入小盅内。这样朝圣者们怀着极大的惊讶与赞叹之情,发现在每个盅子里现在都是一品脱啤酒。]

74.粗木匠的难题

粗木匠拿来一根雕刻着花纹的小木柱说:

“有一次,一位住在伦敦的学者,拿给我一根3英尺长,宽和厚均为1英尺的木料,希望我将它砍削、雕刻成木柱,如你们现在看到的样子。学者答应补偿我在做活时砍去的木材。我先将这块方木称一称,它恰好重30磅,而要做成的这根柱子只重20磅。因此,我从方木上砍掉了1立方英尺的木材,即原来的三分之一。但学者拒不承认,他说,不能按重量来计算砍去的体积,因为据说方木的中间部分要重些,也可能相反。请问,我在这种情况下怎样向好挑剔的学者证明,究竟砍掉了多少木材?”

乍一看,这个问题很困难,但答案却如此简单,以致粗木匠的办法人人皆知。这种小聪明在日常生活中也是很有用的。

[答案:木匠说,他做一个箱子,内部的尺寸精确得与最初的方木相同,即是3×1×1。然后,他把己雕刻好的木柱放入箱内,而在空档处塞满干沙土。然后,他细心地振动箱子,使得箱内沙土填实并与箱口齐平。然后,木匠轻轻取出木柱,不带出任何沙粒,再把箱内的沙土捣平,量出其深度便能证明,木柱能占的空间恰为2立方英尺。这就是说,木匠砍削掉一立方英尺的木材。]

同类推荐
  • 解读科技难题(科学探索的真相)

    解读科技难题(科学探索的真相)

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,社会的进步、科技的发展、人们生活水平的不断提高,为我们读者的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,增强科学探索精神,这是科学普及的关键。
  • 神秘的植物王国

    神秘的植物王国

    本书从植物的起源和进化入手,介绍了植物的分类及特点、植物生长特征、不同植物与人类的关系,更综合了许多特色植物的趣闻,增加了本书的趣味性。
  • 达尔文笔记

    达尔文笔记

    查尔斯·达尔文是英国博物学家,进化论的奠基人。22岁从剑桥大学毕业后,以博物学家的身份乘海军勘探船进行了历时五年的环球航行,观察并搜集了动植物和地质等方面的大量材料,经归纳整理与综合分析,形成了生物进化的概念,于1859年出版了震动当时学术界的《物种起源》一书,成为生物学史上的一个转折点。他提出的以自然选择为基础的进化学说,不仅说明了物种是可变的,对生物适应性也作了正确的解说,从而摧毁了各种唯心的特创论、目的论和物种不变论,使当时生物学各领域已经形成的概念和观念发生了根本的改变。
  • 恐龙科考百科(科学探索百科)

    恐龙科考百科(科学探索百科)

    本套书全面而系统地介绍了当今世界各种各样的科学难解之谜,集知识性、趣味性、新奇性、疑问性与科学性于一体,深入浅出,生动可读,通俗易懂。目的是使读者在兴味盎然地领略科学难解之谜现象的同时,能够加深思考,启迪智慧,开阔视野,增加知识;能够正确了解和认识这个世界,激发求知的欲望和探索的精神,激起热爱科学和追求科学的热情,不断掌握开启人类世界的金钥匙,不断推动人类社会向前发展,使我们真正成为人类社会的主人。
  • 宝藏新探百科(科学探索百科)

    宝藏新探百科(科学探索百科)

    人类社会和自然世界是那么丰富多彩,使我们对于那许许多多的难解之谜,不得不密切关注和发出疑问。人们总是不断地去认识它,勇敢地去探索它。虽然今天科学技术日新月异,达到了很高程度,但对于许多谜团还是难以圆满解答。人们都希望发现天机,破解无限的谜团。古今中外许许多多的科学先驱不断奋斗,一个个谜团不断解开,推进了科学技术的大发展,但又发现了许多新的奇怪事物和难解之谜,又不得不向新的问题发起挑战。科学技术不断发展,人类探索永无止境,解决旧问题,探索新领域,这就是人类一步一步发展的足迹。
热门推荐
  • 绝世天尊

    绝世天尊

    一个泡不到女友的悲剧男离奇穿越异世,意外成为了绝世天才。从此,充满奇幻色彩的异世之路开始了,泡妞,升级,虐虐高手,专治不服,逍遥异世,纵横天下……呃。没事勾搭小妹妹,和美女导师淡淡人生,淡淡理想!【情节虚构,请勿模仿】
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 混迹异域

    混迹异域

    平行时空的异域中,一个战火纷飞,朝代更替的世界中,十二国互相征伐,各国帮派林立,各种武学闪耀四处。正所谓一阁(武绝阁)、二派(峨嵋派)、三盟(天下盟)、四教(圣火教)、五门(神剑门)、六帮(丐帮)、七城(傲剑城)、八谷(药王谷)、九山(飞衡山)、十宗(冥神宗)、十一堡(苗家堡)、十二堂(天鹰堂)、十三庄(天幕山庄)十四会(无旗会)、十五寺(天隆寺)等……但凡有些潜力的习武之人,都会得到武探的青睐,由武探们推荐给各个门派,赚取情报费,不过一些不入流的小门小派,往往也能培养出别样的武林高手。本书融合武学、战争、猎艳、奇遇、复仇、争斗、夺权、勾心斗角等框架结构,带给读者一种别样的感觉。
  • 命运终结之夜fate

    命运终结之夜fate

    圣杯,每大约60年一次,在冬木市都会展开一次关于其的争夺战。公元1800年,第一次圣杯战争。公元1870年,第二次圣杯战争。公元1935年,第三次圣杯战争。公元1990年,第四次圣杯战争。公元2000年,第六次圣杯战争。公元2010年,圣杯被毁,所有英灵随圣杯破坏而释放,最终之战,开战!
  • 来吧我的亲爱

    来吧我的亲爱

    生活在灰色的世界里,一切都被物化,每个人都是存取款机,踯躅在钢筋水泥的丛林中。玄幻法宝,是否能助女主达成心愿。是否能找回最初的爱和被我们丢失已久的原色世界。写此文是为了记住我生命中的每一份情谊。
  • 重生之男校女生

    重生之男校女生

    一场意外让林若菲重生回到了1999年,为了能阻止爸爸林福寿在2000年被工作搭档陷害入狱,林若菲女扮男妆混进了男校,准备找出仇家的儿子以备不时之需。在男校里,林若菲发生了一连串的搞笑事件后,却得到了一个意想不到的结局......
  • 碎裂山河

    碎裂山河

    佛曰:人生有八苦,生老病死爱别离怨长久求不得放不下。林重说:我要斩断人性碎裂山河!
  • 舞蹈公主成功记

    舞蹈公主成功记

    她,是一个平凡的女孩却因为一个不平凡的梦踏进了一个不平凡的世界如果每个人只有一个梦你祈祷什么?完成她的梦想这是沐滴月生命中没有语言的呼喊她的梦想很重要这是沐滴月一辈子念着的故事欢迎你,朋友。
  • 十二色水晶

    十二色水晶

    十二是天物轮回之数,十二也是星宫稳定之数。面对即将到来的毁灭性的资源之战,盘古界的界王裂炎不得不依照神的旨意去寻找优秀的十二水晶战士。为此,地球上的小女孩儿墨瑶糊里糊涂的成为了盘古界的王妃,她是否愿意接受这神圣的使命?又是否能成为优秀的十二水晶战士?十二色水晶会知道。
  • 重生之千年情咒

    重生之千年情咒

    她助他登上天子之位,对他不离不弃,却终是抵不过嫡女姐姐的几声哭喊,最终被献给了一群乞丐,再一次睁开眼,她变得冷酷凶猛,放弃了追求爱情的脚步,面对所有人的害怕颤抖,她巧然嫣笑:“我不想让你们好过,那就不能好过!”