但都由于操作复杂,照片质量差而未能推广。直到80年代,随着电子计算机技术的发展及运用于医学,才出现了数字减影技术。现在,就让我们看看这是怎样的一种检查方法,它使我们的视野延伸到了什么样的境界。
数字减影血管造影术,又叫数字式X线摄影术。它是把电子计算机数字化的能力与常规X线摄影和透视装置结合起来的一种血管造影检查新方法。
这种检查方法的程序是:在进行血管造影之前,先拍一张检查部位的X光片,这叫掩模像。然后从静脉注入微量造影剂,再拍一张同一部位血管造影的X光片,这叫造影像。之后,把这两张像通过X线摄像增强系统,把所形成的图像视频信号转变成数字信号,存入相应的掩模像储存器和造影储存器里,再输入减法器中相减,于是就能获得一幅清晰的、造影剂标示出来的血管图像。这个血管图像再经过对比、增强、模拟转换等一系列复杂过程,就清晰地展现在电视屏幕上了。这些图像还可以输入视盘、磁带和胶片中存挡保存。这样,就非常便于治疗前后进行对比。
血管图像
数字减影造影术一问世,就以它的许多优点占据了优势。这种方法简便、快速、安全,病人痛苦小,不需要住院,更重要的是排除了与血管无关的重叠影像,使保留下来的血管影像十分清晰,诊断的准确性大大提高。使用这种方法,使血管狭窄、动脉粥样硬化等诊断正确率达97%,是目前评价血管闭塞性疾病最好的方法之一。
不仅如此,这项技术还可以指导医生进行血管内的成形手术,不但可用在一般血管,还可用在心脏的冠状动脉。
首先应用数字减影造影术进行血管内手术的是纽约中心医科大学的亚历克斯·伯雷斯顿。他是一个善于观察和爱思考的人。70年代,他在以色列做实习外科医生时,看到农民在沙漠中用滴灌法进行灌溉,从中得到启发。他设计了一种很细很细的导管,在数字减影造影术的指导下,将导管从体外直接进入血管内(当然这一切都是在严密消毒下进行的),滴注少量很强的粘连剂,来切断肿瘤的血管,治疗肿瘤和修补破裂的血管。
后来,别人又在他的基础上,借助DSA技术和光导纤维内窥镜,在内窥镜头上装上“激光刀”,直接进入血管进行清除血管内病变或扩张血管的手术,当然,也可以对脑部血管进行手术,使过去需要开刀的手术变得大为简便。
从DSA技术应用范围的扩大,我们看到了“联想”这种思维方法在创新中的作用。
功能各异的X射线机
你一定做过透视检查吧!这是最简便而常用的X射线检查,它可以从不同角度观察人体器官的形态和运动功能。
说起X射线检查,我们不能不说说X射线的发现。
那是1895年11月8日,德国物理学家威·康·伦琴,在暗室里用高压电流通过低压气体的克鲁克斯管作阴极射线的研究,偶然发现克鲁克斯管附近的一块涂有铂氢化钡结晶的纸板上发生荧光。进一步研究后,证明荧光是由高压电流通过克鲁克斯管时产生的一种看不见的射线引起的。这种射线能穿透普通光线所不能穿透的纸板,并能作用于荧光屏而产生荧光。伦琴把这种射线命名为X射线。
现在知道,X射线是由高速运行的电子群撞击物质,突然被阻时产生的。X射线的波长很短,可以穿过可见光不能穿过的物质,包括我们的身体。X射线波长越短,穿透力越大;物质的密度越小,厚度越薄,则越易穿透。X射线肉眼看不见,但它被某些结晶物质(如铂氢化钡、钨酸钡、硫化锌镉等)吸收时,可以产生波长较长的可见光,即荧光。X射线可以像日光一样,使胶片感光。医学上正是应用了X射线的以上特性,作为透视及X射线照相检查的基础。
目前,根据不同的检查需要,X射线检查机的类型很多,许多已与电子计算机、电视等结合起来,功能也更为完善。
多用途X射线机
1.多用途X射线机:它由计算机控制。它带有多种尺寸的点片装置,能自动切换投照区域的大小,从任何角度做断层、斜位照相,床身可以水平或垂直移动,可做近台操作及遥控。它适用于胃肠造影、直线断层及造影,还可扩充做血管造影。
2.各种小型移动式X射线机:种类很多,代表性的有移动式C臂手术用X射线机,它带有数字的影像增强器,图像质量非常清晰,采用最新自动剂量调节及不反光监视器,操作简便,可用于外科及骨科。带有高频发生器的小型移动式X射线机,重量只有85公斤,可用于床边检查。它使用微机控制,虽然重一些,有250公斤,但是使用起来比较方便。
3.乳腺诊断X射线机:它有特殊的程序控制高频发生器。
4.口腔科专用的各种X射线机:如照全口牙齿的全景X射线机,它对普查有无龋洞很有帮助。还有照一颗牙的牙片X射线机。
层出不穷的CT技术
1979年,美国的柯马克和英国的汉斯菲尔德,由于发明了CT,而摘取了诺贝尔生理学奖的桂冠。
现在,我国许多大医院都可以做CT检查了。
所谓CT是指电子计算机X射线断层摄影机,它是X射线与电子计算机的“混血儿”。目前,CT已发展到第五代,扫描完成一幅图像的时间已由5分钟缩短到1/100秒。
CT实际是在X射线技术的基础上发展起来的,但它不是直接摄影,而是利用电子计算机技术,将X射线扫描后的光量信息进行处理,把体内组织的横断面影像,间接地以密度影像显示出来。它比X射线检查技术灵敏100倍。
做CT检查与X射线检查相比,有许多优点:首先是方便病人,它不用像X射线检查时那样,先要向被检查的器官里注射造影剂,所以对病人没有痛苦和危险。第二,能反映器官内部的情况,能发现早期病变,如颅脑CT,可发现直径0.5厘米以下的小肿瘤,可诊断脑梗塞、脑积水、脑出血及脑动脉畸形,诊断脑肿瘤的准确率可达到94.8%左右;全身CT检查可以发现直径2~3毫米的心脏后壁转移瘤,对肾脏肿瘤检查的准确率可达94%。第三,通过电子计算机的储存、录像,便于追踪复查,帮助判断疾病。同时,还可把摄取的大量图像叠积,形成立体图像,作立体和动态观察。CT辨别疾病能力很强。特别是能早期发现病变,提高了治愈率。
随着计算机技术的进步,CT技术也在不断发展和完善。如出现了三维立体图像的螺旋CT,可以对病变更为准确地定位。还有采用其他物理能源的CT技术,如光子CT、超声CT、发射型CT(ECT)、微波CT、正电子CT、核磁共振CT(NMR)等,其中ECT、NMR是X射线CT的主要竞争对手。
独具慧眼的B超检查
B型超声波检查,已在医院的许多方面得到了应用,它已成为医生检查及诊断的好帮手。
这种检查方法对人体无损害、无痛苦。病人躺在床上,医生用一个探测头,在被检查的部位来回移动,荧光屏上就可以显示波形和图像。如配合电子计算机,一秒种就可以拍摄数十张超声断层像片,为诊断疾病提供依据。
那么,什么是超声波?它是从什么时候开始用于医学检查的?它给我们什么启示?
大家知道,声音是以波的形式传播的。当我们在空旷的大厅或山谷里大声喊叫时,可以听到响亮的回声,这就是声波的反射。但是,我们耳朵的听力很有限,当声波频率超过2万赫兹时就听不到了。这种声波被称为超声波。
人们观察到蝙幅就是利用自己发出的超声波来辨别方向而准确无误地飞行、捕食的。超声波在本质上与能听到的声音一样,只是频率很高,波长很短,基本上沿直线传播,而且可以反射、折射、绕射以及吸收、衰减等,它在固体和液体中比普通声音更容易传播。在它的传播过程中,如果遇到两种不同物体的界面,由于物体对超声波的阻力(称为声阻)不同,就产生界面反射。
对超声波的应用,最早是出于军事目的。第二次世界大战期间,各国为扩大制海权以及更好地刺探海域的敌舰,或深入敌方领海,发展了潜水艇,并用声纳(超声波)作为联系、探寻和发送情报,在战争中发挥了重要作用,技术上也得到了发展。
战争之后,人们在反思:人们长期探寻得到的科学知识和科学技术,为什么只用于战争,而不能更好地为我们的生产、为我们人类的健康服务呢?
正确的思想引导出了正确的行动!
科学家们想:人体各个组织器官的密度不同,如果用超声波来检查,一定能帮助观察有些病变,因为它们的反射界面不同。如果某个器官发生了病变,比如长了血管瘤、肿瘤,有了积水,它的密度和声阻就发生了变化,与正常组织的反射就不同了,就是根据这个原理,到了20世纪50年代,超声波被用于医学检查了。
第一次的超声波检查是用于一个孕妇,当时用的是A型超声波。当超声波进入子宫腔时出现一个平的回声,这是显示的羊水平面;当超声波到达胎儿身体时,波发生了变化,波离开胎体时,又恢复了平的回声。这个检查成功了!它也许像孕妇孕育胎儿一样,预示着超声波在医学领域的广泛运用。
超声波检查
确实,现在超声波检查应用很广泛,有A型、B型、M型超声,还有C超,可以显示立体图像。临床应用最广的是B型超声,它可以通过反射信息的光点,直接把脏器的轮廓、大小、方位及邻近关系显示在荧光屏上。B型超声有灰阶B超和彩色B超。
现在B超都已与计算机技术结合起来,边检查,边拍出清晰的照片。
超声波能分辨出肝脏内2厘米大小的病变;可以测量胎头、胎体等数据,窥测卵巢内滤泡大小及卵巢癌;可以在超声图像监视下指导穿刺和手术定位,观察脏器移植情况。高超声波更可以破坏肿瘤组织。不仅如此,超声波还可以用于许多疾病的治疗,效果还很不错。
这里还要特别讲一讲彩色多普勒检查的问题,因为这是多普勒现象在B超检查上的具体应用,它们的结合使超声检查效果更高一筹。这也是当代医学技术发展的一个特点。
多普勒现象是个天文现象,它是这样发现的:1892年,39岁的奥地利数学和物理学家克约斯琴·约翰·多普勒,在观察来自星球的光色变化时,发现当星球和地球迎向运动时,光波频率升高,向光谱的紫色端移动;当星球与地球背向运动时,光波频率降低,向光谱的红色端移动,产生所谓红移现象。这种因光波和接收器之间的相对运动而引起的光波频率变化的效应,被称为多普勒效应。以后的研究发现,多普勒效应同样适用于声波和超声波。
应用多普勒超声探测心脏、血管或其他脏器时,发射的声束遇到流动着的红细胞,二者相对运动产生多普勒效应。
当超声诊断技术与电子计算机技术结合后许多难以检查的项目就都可以进行了,尤其是应用各种电子扫描探头,它们形状各异,与体表接触面小,几乎可以检查全身一切脏器。
比如,对心脏进行多普勒检查,不仅可以观察到心脏的影像,而且可以直接计算出心脏及各大血管各个部位的血流速度、心排血量,如果心脏瓣膜有病,还可测出病变部位前后的压力差等等。
超声波技术还被用于工业等许多方面。这种技术的互相渗透,也是许多发明发现的非常重要的历史原因。
神奇的显微外科手术
几十年前,如果遇上了断肢或断手的病人,医生只得遗憾地将离断部分丢弃。显微外科技术的发展完全改变了这种状况。
1963年1月,上海市第六人民医院陈中伟和钱允庆医师等为王存柏接活了世界上第一只断手,被誉为世界医学史上的创举,并得到国际同行的承认。
自此以后,我国的显微外科技术得到了发展。
在不断的实践中,医生们又有了新的思考,断肢可以再植,断的手指、脚趾能不能再植呢?最困难的问题是什么呢?最关键的问题又是什么呢?关键是血管能否接通!但是,手指(或脚趾)的血管要比上肢的细得多,在直视下根本不可能缝合起来。于是科学家想到了显微镜。
显微外科手术实质上是医生在手术显微镜的放大下,使用特制的显微手术器械,用比头发丝还细的针线,对细小的血管、神经进行分离缝合。像其他技术一样,显微技术早已用于生物学、组织学和病理学,但最早用在外科手术上的是瑞士耳科医生尼伦和他的同事。1921年,他们就借助放大镜或双目手术显微镜,为耳硬化症病人做内耳手术。进入50年代,有人报告在手术显微镜下进行角膜缝合,至此,显微外科才开始了缝合操作阶段。1960年,美国的血管外科医生杰柯勃森,用手术显微镜缝合血管,使直径1.6~3.2毫米细小血管缝合即刻通畅率达到100%;这是显微外科的划时代发展。
1965年7月,日本外科医生增厚建二借助显微镜,以精湛的外科缝合技术成功地进行了世界第一例手指完全断离后的再植手术,创造了近代外科史上又一个奇迹。从此,外科医生们借助显微镜能够缝合1.5毫米以下的小血管,开始了显微外科的新纪元。
80年代多采用自动控制的变焦距外科手术显微镜,既可以拉近目标,看清微细处,又能连续地回到低功率放大效能,以便看清全貌;还能经常保持同样的光度,便于双手自由活动。在这种手术显微镜下,医生可以缝合直径小于1毫米的微细血管和神经。
现在,借助显微外科手术,已使医生由宏观世界进入了微观世界,手术由厘米进入了以毫米甚至微米作为衡量单位的领域。