登陆注册
8187300000011

第11章 数学教学的趣味奥秘推荐(8)

无满足p|xyz的解,就说对于p,第一种情况的费尔马大定理成立。

如果方程

xp+yp=zp

无满足p|xyz的解,就说对于p,第二种情况的费尔马大定理成立。

因此,吉尔曼证明了p=5,第一种情况的费尔马大定理成立。她还证明了:如果p与2p+1都是奇素数,那么第一种情况的费尔马大定理成立。她还进一步证明了对于≤100的奇素数p,第一种情况的费尔马大定理成立。

在欧拉解决p=3以后的90余年里,尽管许多数学家企图证明费尔马大定理,但成绩甚微。除吉尔曼的结果外,只解决了p=5与p=7的情况。

攻克p=5的荣誉由两位数学家分享,一位是刚满20岁、初出茅庐的狄利克雷,另一位是年逾70已享盛名的勒仕德。他们分别在1825年9月和11月完成了这个证明。

p=7是法国数学家拉梅在1839年证明的。

这样对每个奇素数p逐一进行处理,难度越来越大,而且不能对所有的p解决费尔马大定理。有没有一种方法可以对所有的p或者至少对一批p,证明费尔马大定理成立呢?德国数学家库麦尔创立了一种新方法,用新的深刻的观点来看费尔马大定理,给一般情况的解决带来了希望。

库麦尔利用理想理论,证明了对于p<100费尔马大定理成立。巴黎科学院为了表彰他的功绩,在1857年给他奖金3000法郎。

库麦尔发现伯努列数与费尔马大定理有重要联系,他引进了正规素数的概念:如果素数p不整除B2,B4……Bp-3的分母,p就称为正规素数,如果p整除B2,B4……Bp-3中某一个的分母就称为非正规素数。例如5是正规数,因为B2的分母是6而5×6。7也是正规素数,因为B2的分母是6,B4的分母是30,而7×6,7×30。

1850年,库麦尔证明了费尔马大定理对正规素数成立,这一下子证明了对一大批素数p,费尔马大定理成立。他发现在100以内只有37、59、67是非正规素数,在对这三个数进行特别处理后,他证明了对于p<100,费尔马大定理成立。

正规素数到底有多少?库麦尔猜测有无限个,但这一猜测一直未能证明。有趣的是,1953年,卡利茨证明了非正规素数的个数是无限的。

近年来,对费尔马大定理的研究取得了重大进展。1983年,西德的伐尔廷斯证明了“代数数域K上的(非退化的)曲线F(x,y)=0,在出格g>1时,至多有有限多个K点。”

作为它的特殊情况,有理数域Q上的曲线

xn+yn-1=0(5)

在亏格g>1时,至多有有限多个有理点。

这里亏格g是一个几何量,对于曲线(5),g可用

g=(n-1)(n-2)2

来计算,由(6)可知在n>3时,(5)的亏格大于1,因而至多有有限多个有理点(x,y)满足(5)。

方程

xn+yn=2n

可以化成

x2n+y4n-1=0

改记x2,y2为(x,y),则(7)就变成(5)。因此由(5)只有有限多个有理数解x、y,立即得出(1)只有有限多个正整数解x、y、z,但这里把x、y、z与kx、ky、kz(k为正整数)算作同一组解。

因此,即使费尔马大定理对某个n不成立,方程(7)有正整数解,但解也至多有有限组。

1984年,艾德勒曼与希思布朗证明了第一种情况的费尔马大定理对无限多个p成立。他们的工作利用了福夫雷的一个重要结果:有无穷多个对素数p与q,满足q|p-1及q>p2/3个。而福夫雷的结果又建立在对克路斯特曼的一个新的估计上,后者引起了不少数论问题的突破。

现在还不能肯定费尔马大定理一定正确,尽管经过几个世纪的努力。瓦格斯塔夫在1977年证明了对于p<125000,大定理成立。最近,罗寒进一步证明了对于p<4100万,大定理成立。但是,费尔马大定理仍然是个猜测。如果谁能举出一个反例,大定理就被推翻了。不过反例是很难举的。

37.五家共井

我国最早提出不定方程问题,它由“五家共井”引起。古代,没有自来水,几家合用一个水井是常见的事。《九章算术》一书第8章第13题就是“五家共井”问题:

今有五家共井,甲二绠不足,如乙一绠;乙三绠不足,如丙一绠;丙四绠不足,如丁一绠;丁五绠不足,如戊一绠;戊六绠不足,如甲一绠。如各得所不足一绠,皆逮。问井深、绠长各几何!

用水桶到井中取水,当然少不了绳索,“绠”就是指“绳索”。原题的意思是:

五家共用一水井。井深比2条甲家绳长还多1条乙家绳长;比3条乙家绳长还多1条丙家绳长;比4条丙家绳长还多1条丁家绳长;比5条丁家绳长还多1条戊家绳长;比6条戊家绳长还多1条甲家绳长。如果各家都增加所差的另一条取水绳索,刚刚好取水。试问井深、取水绳长各多少?

虽然该问题是虚构的,它是最早的一个不定方程问题。

用现代符号,可设甲、乙、丙、丁、戊各家绳索长分别为x、y、z、u、v;井深为h。根据题意,可得:

2x+y=h,

3y+z=h,

4z+u=h,

5u+v=h,

6v+x=h。

这是一个含有6个未知数、5个方程的方程组。未知数的个数多于方程个数的方程(或方程组)叫不定方程。用加减消元法可得:

x=265721h,y=191721h,z=148721h,

u=129721h,v=76721h。

给定h不同的数值,就可得到x、y、z、u、v的各个不同的数值。只要再给定一些特定条件,就可得到确定的组解。原书中只给出一组解,是最小正整数解。

我国古代数学家在《九章算术》的基础上,对不定方程作出了辉煌的成绩。“五家共井”问题是后来百鸡术及大衍求一术的先声。

“五家共井”问题,曾引起世界上很多数学家的注视。在西方数学史书中,把最早研究不定方程的功绩归于希腊丢番都。其实,他在公元250年左右才研究这些问题,要比我国迟200多年。

公元6世纪上半期,张丘建在他的《张丘建算经》中有一个百鸡问题:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏生,值钱一。凡百钱,买鸡百只。问鸡翁、母、雏各几何?

意思是,如果1只公鸡值5个钱;1只母鸡值3个钱;3只小鸡值1个钱。现用100个钱,买了100只鸡。问公鸡、母鸡、小鸡各多少?

设公鸡、母鸡、小鸡分别为x、y、z只,则可得不定方程消去z不难得出

5x+3y+13z=100

x+y+z=100

消去z不难得出

y=7x4

因为y是正整数,所以x必须是4的倍数。

设x=4t,则y=25-7t,z=75+3t

∵x>0,∴4t>0,t>0;

又∵y>0,∴25-7t>0,t<347

故t=1,2,3。

∴原方程组有三组答案:

{x=4,y=18,z=78 {x=8,y=11,z=81 {x=12,y=4,z=84

数学史家评论说,一道应用题有多组答案,是数学史上从未见到过的,百鸡问题开了先例。《张丘建算经》中没有给出解法,只说:“术曰:鸡翁每增四,鸡母每减七,鸡雏每益三,即得。”意思是:如果少买7只母鸡,就可多买4只公鸡和3只小鸡。因为7只母鸡值钱21,4只公鸡值钱20,两者相差3只小鸡的价格。只要得出一组答案,就可推出其余两组。但这解法怎么来的?书中没有说明。因此,所谓“百鸡术”即百鸡问题的解法就引起人们的极大兴趣。

稍后,甄鸾在《数术记遗》一书中又提出了两个“百鸡问题”,题目意思与原百鸡问题相同,仅数字有所区别。到了宋代,着名数学家杨辉在他的《续古摘奇算法》一书中,也引用了类似的问题:

“钱一百买温柑、绿桔、扁桔共一百枚。只云温柑一枚七文,绿桔一枚三文,扁桔三枚一文。问各买几何?”

到了明清时代,还有人提出了多于三元的“百鸡问题”。不过,各书均与《张丘建算经》一样,没有给出问题的一般解法。

7世纪时,有人对百鸡问题提出另一种解法,但只是数字的凑合。到了清代焦循在他的《加减乘除释》一书中指出其错误。之后,不断有人提出新的解法,但都没有完全得到普遍解决此类题目的通用方法。例如丁取忠在他的《数学拾遗》中给出一个比较简易的解法:先设没有公鸡,用100个钱买母鸡和小鸡共100只,得母鸡25只、小鸡75只。现在少买7只母鸡,多买4只公鸡和3只小鸡,便得第一组答案。同理可推出其余两组。直到19世纪,人们才把这类问题同“大衍求一术”结合起来研究。

百鸡问题是一个历史名题,在世界上有很大影响。国外常见类似的题目。

38.速度趣题

自行车和苍蝇

两个男孩各骑一辆自行车,从相距20千米的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。

如果每辆自行车都以每小时10千米的高速前进,苍蝇以每小时15千米的高速飞行,那么,苍蝇总共飞行了多少千米?

每辆自行车运动的速度是每小时10千米,两者将在1小时后相遇于20千米距离的中点。苍蝇飞行的速度是每小时15千米,因此在1小时中,它总共飞行了15千米。

许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。

据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼提出这个问题,他思索片刻便给出正确的答案。提问者显得有点沮丧,他解释说,很多数学家总忽略简单方法,而去采用无穷级数求和的复杂方法。

冯·诺伊曼脸上露出惊奇的神色。“可是,我用的正是无穷级数求和的方法”,他解释道。

往返旅行

当我们驾驶汽车旅行的时候,汽车在不同的时刻当然会以不同的速度行驶。如果把全部距离除以驾驶汽车的全部时间,所得到的结果叫做这次旅行的平均速度。

史密斯先生计划驾驶汽车从芝加哥去底特律,然后返回。他希望整个往返旅行的平均速度为每小时60千米。在抵达底特律的时候,他发现他的平均速度只达到每小时30千米。

为了把往返旅行的平均速度提高到每小时60千米,史密斯在返回时的平均速度必须是每小时多少千米呢?

求解这道令人困惑的小小难题,并不需要知道芝加哥与底特律之间的距离。

在抵达底特律的时候,史密斯已经走过了一定的距离,这花去了他一定的时间。如果他要把他的平均速度翻一番,他应该在同样的时间中走过上述距离的两倍。很明显,要做到这一点,他必须不花任何时间便回到芝加哥。这是不可能的,因此史密斯根本没有办法把他的平均速度提高到每小时60千米。无论他返回时的速度有多快,整个旅行的平均速度肯定要低于每小时60千米。

如果我们为史密斯的旅行假设一个距离,事情便会容易理解一些。比如说,假设往返旅程各为30千米。由于他的平均速度为每小时30千米,他将用1小时的时间完成前一半的旅行。他希望往返旅行的平均速度为每小时60千米,这意味着他必须在1小时中完成整个60千米的旅程。可是,他已经把1小时的时间全都用了。无论他返回时速度有多快,他所用的时间全都用了。无论他返回时速度有多快,他所用的时间将多于1小时,因此他必定要用多于1小时的时间完成60千米的旅程,这使得他的平均速度低于每小时60千米。

39.升官题

传说唐代尚书杨损,廉洁奉公,任人唯贤。有一次,要在两名小吏中提升一人,主管提升工作的官员感到很难决断,便请示杨损。杨损认为,作为一个官员,不仅要有高尚的品德,还要有一定的文化水平。于是,他说:“一个官员应具备的一大技能是速算。让我出题来考考他们,谁算得快就提升谁。”杨损出了一道题:

“有人在林中散步,无意中听到几个强盗在商讨如何分赃。他们说,如果每人分6匹布,则余5匹;每人分7匹布,则缺少8匹。试问共有几个强盗几匹布?”两个小吏听过题目后,便用筹算解联立一次方程组。后来,先得出正确结果的小吏果真升了官,大家心服口服。

这个故事反映出我国古代人民对于解联立一次方程组的熟练程度。事实上,在2000多年前的《九章算术》中,已系统地叙述了联立一次方程组的解法,这是中国古代数学的杰出贡献之一。

《九章算术》是我国至今有传本的一部经典数学着作,内容极为丰富,它几乎集中了过去和当时的全部数学知识,将246个问题分为九章,所以叫做《九章算术》。

《九章算述》不是出自某一个人的手笔,不是一个时代的作品。它是经过历代名家的修订和增补,才逐渐成为定本的。它成书于何时,目前学术界尚无统一结论,据推测起码在公元1世纪之前。《九章算术》对我国以及一些外国的数学发展有很大影响,直到16世纪我国的数学着作大都还是受它的体例影响。

同类推荐
  • 神奇生理科学美图大观

    神奇生理科学美图大观

    针对广大读者的好奇心理和探索心理,全面编撰了世界上存在的各种奥秘未解现象和最新探索发展,具有很强的系统性、知识性和神秘性,能够启迪读者思考、增长知识和开阔视野,能够激发读者关心世界和热爱科学,能够培养读者的探索和创新精神。
  • 世界未解之谜

    世界未解之谜

    本书以知识性和趣味性为出发点,全方位、多角度地展示各个领域最有研究价值、最具探索:卷义和最为人们所关注的300多个世界未解之谜,分为神秘宇宙、远古文明、帝王之谜、后宫之谜、生命探奇、军事之谜、神秘宝藏、文化迷踪、科学奥秘、动植物之谜等13个部分。编者在参考了大量文献资料、考古发现的基础上,结合最新的研究成果,客观地将多种经过专家学者分析论证的观点一并提出,展示给读者,使读者既多了一个与大师们面对面交流的机会,又驳了一条了解真相的途径,从而见微知著、去伪存真,揭示谜嘲背后的真相,满足其探奇心和求知欲。同时,本书配有400余幅精美图片,包括实物图片、出土文物、自然风光、建筑景观、摄影照片等。
  • 海洋中环环相扣的食物链(认识海洋系列丛书)

    海洋中环环相扣的食物链(认识海洋系列丛书)

    海洋是生命的摇篮。从第一个有生命力的细胞诞生至今,仍有20多万种生物生活在海洋中,其中海洋植物约10万种,海洋动物约16万种。从低等植物到高等植物,植食动物到肉食动物,加上海洋微生物,构成了一个特殊的海洋生态系统,蕴藏着巨大的生物资源。据估计,全球海洋浮游生物的年生产量(鲜重)为5000亿吨,在不破坏生态平衡的情况下,每年可向人类提供够300亿人食用的水产品,这是一座极其诱人的人类未来食品库!
  • 你一定想知道:动物植物知识

    你一定想知道:动物植物知识

    阐释了动植物王国成员们的精彩生活景象和发展变化过程,科学而系统地讲述了各种动植物的生长特点和生存奥秘。
  • 世界100种自然奇观

    世界100种自然奇观

    我们生活的世界是一个充满奥秘的世界,各种自然奇观无时不刻地发生在我们身边。本书以通俗的手法,向广大读者介绍了看似平淡,实则奇妙的100种发生在我们身边的自然奇观,是广大读者了解自然,增长知识的良师益友。
热门推荐
  • 观心玄枢

    观心玄枢

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 少年记趣(人猿泰山系列)

    少年记趣(人猿泰山系列)

    人猿泰山系列是一部让中小学生开阔眼界、丰富想象力的书,是一部教给孩子动物是朋友、大自然是家园的温情冒险小说,是一部中小学图书馆和孩子的书架上不得不放的书,是父母与孩子共同阅读的睡前故事。小说情节奇谲精彩,主人公强悍而无畏,为孩子们打开了一扇充满着浪漫英雄主义的丛林世界大门。译者的话:上世纪四十年代,我们在读初中时,《人猿泰山》作为世界名著,曾经风靡一时。每逢课间十分钟,同学们几乎满教室争说泰山。当时,这部奇趣曼妙的小说,已经在我们心里扎根了。1988年,我俩六十岁退休后,曾到各地旅游,顺便到各省大图书馆、大学图书馆查询此书,不但译本遍寻不得,连原文本也没有了。
  • 绝对恐怖之都市猎灵人

    绝对恐怖之都市猎灵人

    在这个世界上,总有那么一些不属于人类的东西,他无时无刻都在威胁着我们的命运。一切的转变皆源于那座诡异可怕,神秘莫测的小楼。然而,这仅仅只是开始······。绝对恐怖,绝对震撼你的视觉,恐怖到令你心跳加速,绝望到让你尖叫!声明!胆小勿入,后果自负!
  • 多情枪客

    多情枪客

    胡小三轻轻吹了吹枪管上冒着的热气,一脸不屑,“小子,还想在你龙大爷面前逞能,能的你?”不一样的龙啸云,不一样的小李飞刀世界。
  • 重生之荣耀之路

    重生之荣耀之路

    重生了,不追事业和爱情,一心只想在那个校园里陪着她安静的打打Dota,可是现实会让杨维如意吗?
  • 鬼道狂仙

    鬼道狂仙

    青灯盏、古铜佛,一只小鬼常相伴。流落尘世的小乞丐白云意外身死魂飞魄散之际却被依附在半枚古玉上的一缕执念借尸还魂重临人间。从此踏上一条求仙问道的浮沉路。不一样的仙侠世界演绎一场穿越时空的旷世情缘。当繁华落尽,不羡鸳鸯不羡仙只愿和你到白头。
  • 99日条约:校草的专属女友

    99日条约:校草的专属女友

    她带着姐姐的‘遗愿’,甘愿当他九十九天的奴隶,在这九十九太里,他不但没有办法折磨她,还经常护着她,两人擦出爱情的火花。她因为一个事件,成为了他的女朋友。但在九十八天后却因为一个误会,她离开。一年后,他去到法国,只为找她。见面第一句话就是:“叶梓歆!你这辈子都逃不出我的手掌心!”在另一所学校,再次上演爱情大作战。他们,结果究竟如何呢?用你的手,轻轻翻开,你就会明白!
  • 界癫

    界癫

    这是一个修士繁盛的世界,人人皆为修士。这是一个混乱的世界,用拳头说话,以法力称雄。这是一个还没彻底明了的世界,许多奇迹仍等着被人发现。一个少年从湖底苏醒,意识迷茫,精神不振。他今日无意搅乱了这池湖水,未来却有意的动摇了整个世界。
  • 武林高手在明末

    武林高手在明末

    聂政意外重生于明末,面对这陌生又熟悉的时代,他会如何选择?
  • 大魔归

    大魔归

    昔日王者一败,风华尽散,今朝灵识归来,续写传奇。浮屠九世印,逆转大魔经。神若不贪为何要众生祭拜,神若不恶为何要掌天下众生。待我修成大魔身,尽诛天下神。天地不仁以万物为刍狗,待我修成大魔身,定伐这天地。他本是平平无奇的一个小人物,却因上网猝死穿越到了一处名为混元的大陆,结识了林家二小姐,挖出至宝山河图,修炼神功大魔经,开启了一个与前世完全不同的旅程,同时也一步步解开了缠绕着自己的身世之谜。