登陆注册
8187300000010

第10章 数学教学的趣味奥秘推荐(7)

33.“1+1”

1742年6月7日,当时还是中学教师的哥德巴赫,写信给当时侨居俄国彼得堡的数学家欧拉一封信,问道:“是否任何不小于6的偶数,均可表为两个奇素数之和?”因为哥德巴赫喜欢搞拆数游戏。20几天后,欧拉复信写道:“任何大于6的偶数,都是两个奇素数之和。这一猜想,虽然我还不能证明它,但是我确信无疑地认为这是完全正确的定理。”这就是一直未被世人彻底解决的着名的哥德巴赫猜想,也称哥德巴赫-欧拉猜想。数学家简称这个问题为(1,1),或“1+1”。命题简述为:

(A)每一个≥6的偶数都可表为两个奇素数之和;

(B)每一个≥9的奇数都可表为三个奇素数之和。

显然,命题(B)是(A)的推论。因为任何一个奇数,如减掉一个奇素数,当然就是偶数了。此时如能证明命题(A),当然命题(B)就得证了。但是,这两个问题没有可逆性。命题(B)在本世纪30年代,前苏联科学家依·维诺格拉朵夫创造了一系列估计指数和重要方法,从而使他在1937年,间接地证明了命题(B)。

1930年,会尼列尔曼用密率法证明了每一个自然数可以表为不超过k个素数的和,这时K是一个固定的自然数。开始定出的k=2+1010,很快就有人把它降为k=69。利用密率法得到的最好结果是k=18,即每一个自然数可以表为≤18个素数的和。这里说的每一个自然数,不是充分大的自然数。这是密率法独具的优点,用其他方法(圆法和筛法)只能得出关于充分大的自然数的结论。

1937年,前苏联数学家维纳格拉道夫用圆法证明了每个充分大的奇素等于3个素数的和。随后有人证明这里的“充分大”可用“>eC16·038”来代替。这个数超过400万位,是一个非常巨大的数。现在这个常数已经大大缩小,但仍然是一个很可观的大数。

在240多年的漫长的岁月里,有人对哥德巴赫猜想进行了大量验算工作,有人曾经验算过偶数x≤5×188,即x在5亿以内,哥德巴赫猜想都是对的。

在此期间,有些人更想过一些办法,例如折叠法,他们将自然数比着很长的梳子上的各个齿,先将代表复合数的齿全部掰掉,剩下来的,当然都是素数。然后再把同样的梳子,颠倒过来对上,如果梳子上原有的齿为偶数x个,这样将1对着x-1,3对着x-3……p对着x-p,(1≤p≤x-1)。因为在x较大时,不能证明是否还存在齿对着齿情况,故问题没有解决。

此法的缺点是:先将代表复合数的齿全掰掉了。因为素数的存在是微弱地依附着较小素数及其倍数的复合数,而这点儿微弱的痕迹也给掰掉了。而这个问题,又不能从概率的办法解决,因为素数不是正态分析,而是一个确定的问题。所以他们就将x确定为一定值,再每两个齿一错位。这样,一个用有限问题企图解决无限问题,当然是极其困难的。尽管如此,仍有一些人在艰苦地攀登。所以后来,他们把大于某一个很大的数(例如k0=e49c)偶数,叫做大偶数,再将任一大偶数N(N>K0)写成自然数N1与N2之和,即N=N1+N2。而N1与N2里素因数这个数,分别不多于s与t个。故简记为(s,t),或写成带引号的加法:“s+t”,此时N1与N2可以叫做殆(接近)素数,然后将s与t值逐步缩小。如果一旦将s,t均计算到1,那时再来证明5×108<N≤e49 c时,(1,1)成立。这样,(1,1)问题即解决了。但是,至今没有最后解决。现将当前世界取得的名次结果,列表如下:

(s,t)年代结果获得者国别(9,9)1920布龙挪威(7,7)1924雷特马赫德(6,6)1932埃司特曼英(5,7),(4,9)1937蕾西意(3,15),(2,366)1937蕾西(5,5)1938布赫夕太勒前苏联(4,4)1940布赫夕太勒(1,C很大)1948瑞尼匈(3,4)1956王元中(3,3),(2,3)1957王元(1,5)1962潘承洞中〖3〗巴尔巴恩〖4〗前苏联(1,4)1962王元(1,4)1963潘承洞〖3〗巴尔巴恩(1,3)1963布赫夕太勒〖3〗(小)维诺格拉朵夫前苏联〖3〗波皮里意(1,2)1973陈景润中按照华林原来的猜测,g(2)=4,g(3)=9,g(4)=19。一般地猜测:

g(k)=2k+〔(x)k〕-2(1)

其中〔x〕表示x的整数部分。

经过许多数学家的努力,除去k=4外,(1)已被证明,其中g(5)=37是我国科学家陈景润于1964年证明的。

对于k=4,目前已经证明:

19≤g(4)≤21,

并且在n<10310或n>101409时,n可以表示为19个4次方的和。这已经接近于预期的目标g(4)=19了。

人们还发现,当自然数充分大时,可以将它表为G(k)个K次幂的和,这里G(k)≤g(k)。实际上,G(k)比g(k)小得多(当k大的时候)。目前仅仅知道G(2)=4,G(4)=19。对G(k)进行估计是一个很艰难的问题。

34.回数猜想

一提到李白,人们都知道这是我国唐代的大诗人,如果把“李白”两个字颠倒一下,变成“白李”,这也可以是一个人的名字,此人姓白名李。像这样正着念、反着念都有意义的语言叫做回文,比如“狗咬狼”、“天和地”、“玲玲爱毛毛”,一般说来,回文是以字为单位的,也可以以词为单位写回文,回文与数学里的对称非常相似。

如果一个数,从左右两个方向来读都一样,就叫它为回文数,比如101,32123,9999等都是回文数。

数学里有个有名的“回数猜想”,至今没有解决,取一个任意的十进制数,把它倒过来,并将这两个数相加,然后把这个和数再倒过来,与原来的和数相加,重复这个过程直到获得一个回文数为止。

例如68,只要按上面介绍的方法,三步就可以得回文数1111。

68+86154+451605+5061111

“回数猜想”是说:不论开始时采用什么数,在经过有限步骤之后,一定可以得到一个回文数。

还没有人能确定这个猜想是对的还是错的,196这个三位数可能成为说明“回数猜想”不成立的反例,因为用电子计算机对这个数进行了几十万步计算,仍没有获得回文数,但是也没有人能证明这个数永远产生不了回文数。

数学家对同时是质数的回文数进行了研究,数学家相信回文质数有无穷多个,但是还没有人能证明这种想法是对的。

数学家还猜想有无穷个回文质数时,比如30103和30203,它们的特点是,中间的数字是连续的,而其他数字都是相等的。除11外必须有奇数个数字,因为每个有偶数个数字的回文数,必然是11的倍数,所以它不是质数,比如125521是一个有6位数字的回文数,按着判断能被11整除的方法:它的所有偶数位数字之和与所有奇数位数字之和的差是11的倍数,那么这个数就能被11整除,125521的偶数位数字是1,5,2;而奇数位数字是2,5,1,它们和的差是:

(1+5+2)-(2+5+1)=0,

是11的倍数,所以125521可以被11整除,且:

125521÷11=11411。

因而125521不是质数。

在回文数中平方数是非常多的,比如,

121=112,

12321=1112,

1234321=11112,

……

12345678987654321=1111111112,

你随意找一些回文数,平方数所占的比例比较大。

立方数也有类似情况,比如,1331=113,1367631=1113

这么有趣的回文数,至今还存在着许多不解之谜。

35.冰雹猜想

30多年前,日本数学家角谷静发现了一个奇怪的现象:一个自然数,如果它是偶数,那么用2除它;如果商是奇数,将它乘以3之后再加上1,这样反复运算,最终必然得1。

比如,取自然数N=6,按角谷静的作法有:6÷2=3,3×3+1=10,10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,从6开始经历了3→10→5→16→8→4→2→1,最后得1。

找个大数试试,取N=16384。

16384÷2=8192,8192÷2=4096,4096÷2=2048,2048÷2=1024,1024÷2=512,512÷2=256,256÷2=128,128÷2=64,64÷2=32,32÷2=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,这个数连续用2除了14次,最后还是得1。

这个有趣的现象引起了许多数学爱好者的兴趣,一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题,数学系和计算机系的大学生,差不多人人都在研究它。”人们在大量演算中发现,算出来的数字忽大忽小,有的过程很长,比如27算到1要经过112步,有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷成冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉下来,变成了1!选数学家把角谷静这一发现,称为“角谷猜想”或“冰雹猜想”。

这一串串数难道一点规律也没有吗?观察前面作过的两串数:

6→3→10→5→16→8→4→2→1;

16384→8192→4096→2048→1024→512→256→128→64→32→16→8→3→2→1。

最后的三个数都是4→2→1。

为了验证这个事实,从1开始算一下:

3×1+1=4,4÷2=2,2÷2=1。结果是1→4→2→1,转了一个小循环又回到了1,这个事实具有普遍性,不论从什么样自然数开始,经过了漫长的历程,最终必然掉进4→2→1这个循环中去,日本东京大学的米田信夫对从1到10995亿1162万7776之间的所有自然数逐一做了检验,发现它们无一例外,最后都落入了4→2→1循环之中!

计算再多的数,也代替不了数学证明。“角谷猜想”目前仍是一个没有解决的悬案。

其实,能够产生这种循环的并不止“角谷猜想”,下面再介绍一个:

随便找一个四位数,将它的每一位数字都平方,然后相加得到一个答数;将答数的每一位数字再都平方,相加……一直这样算下去,就会产生循环现象。

现在以1998为例:

12+92+92+82=1+81+81+64=227,

22+22+72=4+4+49=57,

52+72=25+49=74,

72+42=49+16=65,

62+52=36+25=61,

62+12=36+1=37,

32+72=9+49=58,

52+82=25+64=89。

下面再经过八步,就又出现89,从而产生了循环:

36.千古之谜

现代数论的创始人、法国大数学家费尔马(1601-1665),对不定方程极感兴趣,他在丢番图的《算术》这本书上写了不少注记。在第二卷问题8“给出一个平方数,把它表示为两个平方数的和”的那一页的空白处,他写道:“另一方面,一个立方不可能写成两个立方的和,一个四方不可能写成两个四方的和。一般地,每个大于2的幂不可能写成两个同次幂的和。”

换句话说,在n>2时,

xn+yn=zn(1)

没有正整数。这就是举世闻名的费尔马大定理。

“关于这个命题”,费尔马说:“我有一个奇妙的证明,但这里的空白太小了,写不下。”

人们始终未能找到弗尔马的“证明”。很多数学家攻克这座城堡,至今未能攻克。所以,费尔马大定理实际上是费尔马大猜测。人们在费尔马的书信与手稿中,只找到了关于方程

x4+y4=z4(2)

无正整数解的证明,恐怕他真正证明的“大定理”也就是这n=4的特殊情况。

既然(2)无正整数解,那么方程

x4k+y4k=z4k(3)

无解(如果(3)有解,即有正整数x0,y0,z0使

x04k+y04k=z04k(3)

那么(x0k)4+(y0k)4=(z0k)4

这与(2)无解矛盾!

同理,我们只要证明对于奇素数P,不定方程

xp+yp=zp(4)

无正整数解,那么费尔马大定理成立(因为每个整数n>2,或者被4整除,或者有一个奇素数p是它的因数)。

(4)的证明十分困难。在费尔马逝世以后90多年,欧拉迈出了第一步。他在1753年8月4日给哥德巴赫的信中宣称他证明了在p=3时,(4)无解。但他发现对p=3的证明与对n=4的证时截然不同。他认为一般的证明(即证明(4)对所有的素数p无正整数解)是十分遥远的。

一位化名勒布朗的女数学家索菲·吉尔曼(1776-1831)为解费尔马大定理迈出了第二步。她的定理是:

“如果不定方程

x5+y5=z5

有解,那么5|xyz。”

人们习惯把方程(4)的讨论分成两种情况。即:如果方程

xp+yp=zp

同类推荐
  • 青少年爱玩的魔术全集:生活魔术

    青少年爱玩的魔术全集:生活魔术

    本书内容包括:小丝巾,大秘密——丝巾魔术、梦幻纸张,变幻莫测——纸张魔术、百变魔绳,妙趣横生——绳索魔术、不呆思议的视觉盛宴——手法魔术、随时随地,信手拈来——小道具魔术。
  • 青少年科技常识必读

    青少年科技常识必读

    每一朵花,都是一个春天,盛开馥郁芬芳;每一粒沙,都是一个世界,搭建小小天堂;每一颗心,都是一盏灯光,把地球村点亮!借助图书为你的生活添一丝色彩。这是一套包罗生活万象的、有趣的书,向读者介绍了不可不知的中的常识。包括文学常识、地理常识、历史常识、安全常识、文化常识、动物常识、植物常识、科技常识、天文常识、生活常识等。这些都是一些生活常识性的问题,说大不大,说小不小,因为零散,平时想了解又难以查找,我们将这些你们可能感兴趣的、富有趣味的日常生活中日积月累的宝贵经验搜集并编辑成册,以便您在遇到问题时随时查询,轻松解决生活中的问题。
  • 我国农业企业信息技术采纳理论与实证研究

    我国农业企业信息技术采纳理论与实证研究

    本书拟以我国农业企业为对象,在对我国农业企业信息技术的应用现状调查的基础上,探讨信息技术提升农业企业核心竞争力的机制,从组织、个体、过程三个方面对我国农业企业信息技术采纳进行分析,并对农业企业信息技术应用效果评价进行研究。本书一方面将拓展企业信息化问题的研究领域,使得企业信息化的研究延伸到农业领域,充实传统行业信息化相关理论,加快农业企业信息化的实施步伐,寻求以信息化改造农业的实现途径,有利于促进国民经济和社会的信息化发展。
  • 身手不凡的机器人:无处不在的新科技

    身手不凡的机器人:无处不在的新科技

    当今世界人类社会进步与发展的动力是什么?毫无疑问,是科学技术。科学技术的成就改变了人类和当今世界的面貌,它对人类与社会发展愈趋增强的辐射与全面渗透,是人类有史以来最为辉煌的文化景观。科学技术的飞跃发展对人类思维方式、生活方式和社会进步的影响,从某种意义上来讲无疑是决定性的。从原子弹的爆炸到核能的广泛利用,从人造卫星上天到阿波罗号月球之旅,从杂交水稻到克隆绵羊,从进入千家万户的数字电视到遍布全球的互联网……这些日新月异的变化告诉我们,科学技术对社会经济的推动作用已经呈现出一种越来越强的加速作用。
  • 动物生存智慧

    动物生存智慧

    遍览大千世界中形形色色的动物,不必说鹰击长空,鱼翔浅底,虎啸山林,狼行天下的壮美画卷,也不必说乌鸦反哺,羊羔跪乳,海豚救人,比翼双飞的高尚情感,就说蚂蚁精诚团结,壁虎断尾自救,雁群纪律严明,斑羚顾全大局的生存智慧,也应当成为我们人类学习的榜样。
热门推荐
  • 风雨江湖哪得渡

    风雨江湖哪得渡

    一个少年人,没了义父,他学会了喝酒,也学会了杀人。
  • 次元侵入

    次元侵入

    一场来自数个位面之外的灭世之战,却波及到地球,地球君,请坚强!
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 卿歌叹离愁

    卿歌叹离愁

    前世,她是凤家大小姐,本该一生无忧,却被庶妹一步一步的害死。前世,他是权倾天下的皇子,最后一步一步君临天下。她重生而来,势必要夺回自己的一切,并且把上一世害了自己的人全部干掉。她扶小妹,帮兄长。最后,却是突然发现背后来了一个武功高强的摄政王?“摄政王啊,你说,我又没抢你啥,你跟着我干嘛!”她突然后悔自己当初救他了。“你是没抢本王什么,可是你却把本王的心给偷走了。”她背后的美男邪魅一笑。
  • 狼魂魄

    狼魂魄

    柔情应不应该存在于狼群之中?人们所厌恶的狼,会不会有爱的存在?见证两代狼王,见证爱改变的奇迹。让爱在众狼心中流动,也许这才是狼真正圣洁的灵魂,也许这才是狼真正伟大的魂魄!
  • 梦恋殇

    梦恋殇

    千世轮回一场殇,穿越时空爱苍茫。历尽万劫心不渝,恋殇千世永传唱……
  • 绝色女保镖:冷少,不服来战

    绝色女保镖:冷少,不服来战

    别人走路最多捡钱,夏秋雨倒好,她捡了一个‘神经病’。此‘神经病’身着古代王族服装,自称本王,还嚷嚷着要回雷霆王朝——看见飞机会害怕,看见汽车会尖叫,职业女保镖夏秋雨除了要时刻顾及总裁大人,还要保护这个自称本王的美男。面对一张床要睡两个人的尴尬,夏秋雨让他睡沙发。“本王不服,本王要睡床。”某男率先爬上了床。夏秋雨捏了捏拳头,“不服?不服来战!”某男贼光闪现,“你确定要在床上战?”
  • 叶落云浮

    叶落云浮

    活着到底是为了什么?存在意义是什么?我们到底该以怎样的心态面对未知的东西,面对死亡是又该怎样?孤独,冷漠,阴谋,大义,亲情,友情,爱情,十四岁的少年面对这世界的真相,又该何去何从?
  • 腹黑萌宝挑爹爹

    腹黑萌宝挑爹爹

    谁敢再轻视她,打得连你娘都不认得!喂,这位大大,儿子跟老婆可没有这么容易认回去!【情节虚构,请勿模仿】
  • 英雄联盟之无兄弟不联盟

    英雄联盟之无兄弟不联盟

    享受过开黑的娱乐么?体验过比赛的激烈么?体会过战场之上杀人的快感么?无兄弟不联盟,集结着兄弟们的年少热血、逗比生活、社会现实,主角由青涩到成熟,逐渐成长。每个人都有一个专属游戏,或者是人皇时代的魔兽争霸、或者澄海、或是梦三,又或者是风靡世界的LOL;不要嘲笑,不要轻视,不要驻足观望;我们只是紧跟时代,融入时代,掌控时代;想创造一个属于自己的时代?