登陆注册
8186600000013

第13章 数学教学的趣味题型推荐(8)

84.棘手的盗窃案

一天清晨,人们发现一家商店的保险柜被撬,夜里守店的老头被杀死,抛入河中。尸体打捞上来后,一个警察在死者衣袋里发现了一块走时很精确的高级怀表,但已停止运行。无疑,表针所指示的时间是一个非常重要的线索。可是,那警察忘记了要保护现场的守则,竟把怀表的指针拨弄了几圈。侦探长问他是否记得拨弄前时针所指示的钟点?那警察报告说:“具体时间没有细看,但有一点我印象十分深刻,就是时针和分针正好重叠在一起,而秒针却停留在一个斑点的地方。”侦探长看了看怀表,表面有斑点的地方是49秒。他马上拿出纸计算了一下,很快就确定了尸体抛入河中的确切时间,从而缩小了破案范围,很快抓到了凶手。你知道怀表指针究竟停在什么时刻吗?

[答案:怀表指针停在4时21分49秒。这是因为:在12小时内,时针与分针有11次重合机会。时针的速度又是分针的1/12,因此,在上一次重合之后,每隔1小时5分27811,两针又要再度重合一次。在午夜零点以后,两针重合的时间是:

(1)1时5分27311秒;

(2)2时10分54611秒;

(3)3时16分21911秒;

(4)4时21分49111秒。

而警察看到秒针停在有斑点的地方正好是49秒处。]

85.奇数和偶数

活动课上,黑熊老师笑着对大家说:“我们来做个游戏,好不好?”

“好!”小动物们齐声回答。

“请你们每位准备两张小纸条。”黑熊老师清了清嗓子说。

小动物们不知道黑熊老师要它们做什么游戏,一个个兴奋得眼睛发亮,很快都把小纸条准备好了。

黑熊老师环视一下全班同学,说:“请你们在两张小纸条上分别写一个奇数和一个偶数,写好后,两手各握一张。不要给我也不要给你身边的同学看见。”

小动物们不久前刚学过关于奇数和偶数的知识,不一会儿,大家都完成了黑熊老师提出的要求。

“听着,”黑熊老师一字一句清晰地说道,“你们各位都请将右手中的数乘2,左手中的数乘3,再把乘积相加。不要算出声音来。”

等小动物们一个个都算好了,黑熊老师又叫算出得数是奇数的小动物们排成一队;得数是偶数的排一队。

小动物们都站好了,一个个感兴趣地看着黑熊老师,猜测着它下一步要它们做什么。

“好了!”黑熊老师指着得数是奇数的那排小动物说,“你们左手握的都是奇数。”

它又指着另一排小动物说:“你们左手握的都是偶数。”

两排小动物摊开手掌一看,可不是,黑熊老师猜得完全正确。

小动物们惊奇极了,忍不住纷纷问道:“老师,您是怎么知道的?”

[答案:奇数×2=偶数奇数×3=奇数

偶数×2=偶数偶数×3=偶数

而偶数十偶数=偶数偶数十奇数=奇数

左手是奇数时,奇数×3是奇数,奇数十偶数(右手中的偶数×2),结果是奇数。

而如右手是奇数时,奇数×2成偶数,偶数十偶数(左手中的偶数×3),结果是偶数。

这就是最后结果与左手中数字奇偶相同的原因,也即我这个猜法的根据。

小动物们恍然大悟……]

86.有名的牛吃草的问题

牛顿的名着《一般算术》中,还编有一道很有名的题目,即牛在牧场上吃草的题目,以后人们就把这种应用题叫做牛顿问题。

“有一片牧场的草,如果放牧27头牛,则6个星期可以把草吃光;如果放牧23头牛,则9个星期可以把草吃光;如果放牧21头牛,问几个星期可以把草吃光?”

解答这道题时,我们假定牧草上的草各处都一样密,草长得一样快,并且每头牛每星期的吃草量也相同。

你会解这道题吗?

[答案:分析与解在牧场上放牛,牛不仅要吃掉牧场上原有的草,还要吃掉牧场上新长出的草。因此解答这道题的关键是要知道牧场上原有的牧草量和每星期草的生长量。

设每头牛每星期的吃草量为1。

27头牛6个星期的吃草量为27×6=162,这既包括牧场上原有的草,也包括6个星期长的草。

23头牛9个星期的吃草量为23×9=207,这既包括牧场上原有的草,也包括9个星期长的草。

因为牧场上原有的草量一定,所以上面两式的差207-162=45正好是9个星期生长的草量与6个星期生长的草量的差。由此可以求出每星期草的生长量是45÷(9-6)=15。

牧场上原有的草量是162-15×6=72,或207-15×9=72。

前面已假定每头牛每星期的吃草量为1,而每星期新长的草量为15,因此新长出的草可供15头牛吃。今要放牧21头牛,还余下21-5=6头牛要吃牧场上原有的草,这牧场上原有的草量够6头牛吃几个星期,就是21头牛吃完牧场上草的时间。72÷6=12(星期)。

也就是说,放牧21头牛,12个星期可以把牧场上的草吃光。]

87.五种颜色的铅笔

有红、黄、蓝、绿、白五种颜色的铅笔,每两种颜色的铅笔为一组,最多可以搭配成不重复的几组?

[答案:分析与解根据题意,红色铅笔分别与黄、蓝、绿、白四种颜色的铅笔搭配,有不重复的4组;黄色铅笔分别与蓝、绿、白三种颜色的铅笔搭配,有不重复的3组;蓝色铅笔分别与绿、白二种颜色的铅笔搭配,有不重复的2组;绿色铅笔与白色铅笔搭配,有不重复的1组。所以最多可以搭配成不重复的4+3+2+1=10组。]

88.怎样分宝石

5个海盗抢到了100颗宝石,每一颗都一样的大小和价值连城。他们决定这么分:

1.抽签决定自己的号码(1,2,3,4,5)。

2.首先,由1号提出分配方案,然后大家5人进行表决,当达到半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。

3.如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当达到半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。

4.以次类推……条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。

问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化。

[答案:如果只剩4,5号,5一定会反对4,因为没过半数,4一定被杀,5得到全部宝石;

所以如果只剩3,4,5号4号一定会支持3号这样才能活下去;

而3号提出的方案一定会通过,且有利于自己,即100,0,0;

因此3号一定想除掉前面的1,2号,3肯定会反对1的方案;

2暂时忽略。如果1给4,5号每人一个宝石就比没有强,4,5号一般会支持;

所以考虑他们的心理,但是如果1死后,2也会给4、5一人一颗,这样的话,4,5就不一定支持1号了,一号只有再拿出一颗给4或5,大家再来看3号,如果1号不给他一点,他是一会同意的,所以正确答案是:

96,0,1,1,2或96,0,1,2,1]

89.总经理的怪题

7.11是美国的一个连锁店的名字,该连锁店经营食品和一些日常用品。一天,该店的总经理出了一道题,他问:“有一个顾客,买了四样小商品,这四样商品价格加起来恰是7.11美元,而这四样商品的价格的乘积也恰是7.11美元,请问,这四样商品的价格分别是多少?”

[答案:根据原题可以写出这样一个不定方程:

A+B+C+D=7.11

A×B×C×D=7.11

该不定方程有两个方程式组成,有四个未知数,用一般解方程方法是无法得到未知数的解的(这也是为什么这种方程被称为不定方程)。解不定方程,需要用题目中给与的或明确或隐含的条件来辅助解决。

人们不习惯于小数的运算,因此,可以把该方程转化为整数:

A+B+C+D=711

A×B×C×D=711000000

首先,要从这711000000着手,711000000等于79×5×5×5×5×5×5×3×3×2×2×2×2×2×2,ABCD必定分别是它们某几个之间相互的乘积。这里隐含的已知条件是:ABCD,均是正整数,在数值在1到711间(确切地说,ABCD每个数都不小于1,不大于708)。

注意上述的分解出的乘数中,比较突出的数字是79,它只出现一次,且最大,是破案中最明显的目标。在ABCD中,其中一个必含有79(是79的倍数)。因为上面我们说过,ABCD任何一个数,包括该含有79的数不能大于711,那么该含79的数字小于711的可能的值有6个,从大到小分别是79×3×2=474,79×5=395,79×2×2=316,79×3=237,79×2=158,及79本身。看,我们一下就把侦破的范围缩小到六个数中,该问题的答案中的含有79的那个数,就在这六个数之中。

让我们分别来看,看这六个可能的数,是否可以满足作为方程的解的要求。

第一个,看看474。711000000除掉474(79×3×2)后,剩下的数是5×5×5×5×5×5×3×2×2×2×2×2,这些数字要组合成三个数,这三个数的和要等于711-474=217。我们知道,由乘数分别组合来的几个数,在它们数字最接近时,其和最小。例如,2×2×2×2×2×2组合成两个数字时,只有在组合成2×2×2和2×2×2时,它们的和最小,为16,其它的任何组合成两数的和,都大于16(例如,2×2×2×2+2×2=20)。我们可以看到,5×5×5×5×5×5×3×2×2×2×2×2能组合成的和为最小的三个数(最为接近的三个数)是100,120,125,而它们的和是345,大于所要满足的217。因此,无论它们如何组成三个数,都只可能大于217,而不可能满足等于217的作案条件/解题条件,那么问题出在哪里呢?问题出在,79×3×2=474不可能是该题的解,即474不是ABCD中的任何一个,因为如果ABCD其中一个是474,其它数无论如何组和,都不可能满足那两个方程式。这样,我们可以排除474。

第二个,看看395(79×5)。用同样的分析,我们可以看到,711000000除去395后,所余下的数,能组成的和为最小的三个数是120,120,125,其和为365,大于所要的711-395=316。同样道理,395也可以排除在嫌疑之外。

第三个,看看316(79×2×2),当然还用同样的分析方法。哈,这次猜猜会有什么样的结果呢?呵呵,这次我们的运气实在是好,阳台上花盆不小心掉下去,正砸在楼下撬窗准备入室行窃的小偷脑袋上。711000000除去316后,余下的数组合成的和为最小的三个数为120,125,150,而120+125+150=395恰等于711-316。结果,在排除疑犯时,一不小心,歪打正着,我们抓住了正在作案的家伙,316,120,125,150恰是满足原题条件的一组解。而且,在一个数是316的情况下,除了120,125,150外,其它组合成的三个数都要大于395,因而,在一个数是316的情况下,只有这一组解。

抓住一组案犯,但是否还有其它案犯存在呢?换成数学语言是,这组解是否是唯一解呢?

六个可能的含有79的值,我们分析了三个,还剩下三个。这剩下的三个数,我们也要排查一下。

第四个,看看237(79×3)。这次,用上面的方法就不灵了,因为在下面这三个数字,被711000000除后的数值,组成三个数的最小和,可以小于711减该数的差值。这次,我们用新方法。如果四个数字中,一个是237,那么余下的三个数值之和应该是711-237=474。我们再看看711000000除以237后,得到5×5×5×5×5×5×3×2×2×2×2×2×2,注意其中的六个5。如果这三个数值都含有5,那么其和必定也可以被5整除。但474是不能被5整除的,说明至少一个数值之中不含有5。是否可能只有一个数值中含有5呢?我们看六个5相乘等于15625,远大于所要求的三个数值之和474,所以这六个5不可能完全在一个数值中。同样,一个数值中也不可能有五个5相乘(得3125),也不可能有四个5相乘(得625)。所以,可能的情况只有,在含有5的两个数值中,一个数值中有三个5,而另一个数值中也有三个5。这样,这两个数字只可能是125或125×2(不可能是125×3,因为125×3+125大于474)。于是,我们只有两组可能的值,一个是125,125,192,另一组是125,250,96。这两组值,其和都不是474,它们都不是我们的题解。排除!

第五个,看看158(79×2)。158也不能被5整除,所以我们仍然可以用上面的方法。过程就不罗嗦了,得到可能的四组值分别是125,125,288;125,250,144;250,250,72;125,375,96。同样,没有一组的和等于711-158,所以,158也是清白的。

同类推荐
  • 大自然的奇闻趣事(探索神秘的大自然)

    大自然的奇闻趣事(探索神秘的大自然)

    大自然是一种客观存在,早于人类诞生之前就已经诞生了,千万年来,人类就在大自然的“拥抱下”一路走来。大自然包含了太多太多的神秘和奇闻,虽然从诞生伊始,人类就与大自然零距离接触,并且在很早就开始了对大自然的探索,试图了解大自然的种种奥妙之处,但到目前为止,人类还不能说已经了解了大自然,大自然依旧以它的神秘傲立于世。
  • 穿越时空的现代交通(新编科技大博览·B卷)

    穿越时空的现代交通(新编科技大博览·B卷)

    由于全书内容涵量巨大,我们将其拆为A、B两卷。A卷包括:形形色色的现代武器、精彩绚丽的宇宙时空、日新月异的信息科学、握手太空的航天科技、穿越时空的现代交通、蓬勃发展的现代农业、日益重要的环境科学、抗衡衰亡的现代医学、解读自身的人体科学、走向未来的现代工业,共十卷。B卷包括:玄奥神秘的数学王国、透析万物的物理时空、奇异有趣的动物世界、广袤绮丽的地理、生机百态的植物世界、扑朔迷离的化学宫殿、蔚蓝旖旎的海洋、探索神秘的科学未知,共八卷。
  • 太空奥秘解读

    太空奥秘解读

    太空将是我们人类世界争夺的最后一块“大陆”,本书包括宇宙的范围、宇宙的年龄、宇宙的诞生与消亡、宇宙的秩序、宇宙中的太阳系、宇宙里的生命研究、宇宙暗物质等内容,去伪存真地将未解之谜与科学研究结合起来,非常适合广大青少年读者阅读和收藏。
  • 动物生存智慧

    动物生存智慧

    遍览大千世界中形形色色的动物,不必说鹰击长空,鱼翔浅底,虎啸山林,狼行天下的壮美画卷,也不必说乌鸦反哺,羊羔跪乳,海豚救人,比翼双飞的高尚情感,就说蚂蚁精诚团结,壁虎断尾自救,雁群纪律严明,斑羚顾全大局的生存智慧,也应当成为我们人类学习的榜样。
  • 绿色校园

    绿色校园

    绿色,是生命的象征,是希望的色彩;绿色校园,饱含着对未来的向往与追寻,凝聚着教育新理念的火花与期冀——为明天的腾飞插上绿色的翅膀,为未来的美好传输和谐发展的理念!
热门推荐
  • 圣洛独尊

    圣洛独尊

    圣洛界,宗门林立,武道为尊,强大的武者可开天辟地、翻江倒海,无数英雄人物,名震圣洛!九大势力,唯吾独尊!天外天内,天帝执掌;太阳神殿内,阳祖之名威震八方;斗宫之内,宇天帝君战四方;圣域之地,强大无匹,编纂风云,盖世英杰……!魔神之心离奇消失,竟融入少年体内,神秘身世,血海深仇,待我修行一刻,让你悔恨当初!踏上圣天洋,陷入大江湖纠纷,平定乱世,击退邪魔道。我为万世至尊,圣洛独尊!
  • 子虽无忧

    子虽无忧

    世人皆道无忧谷主司徒神机,精通傀儡之术,乃是祸乱天下的大魔头,人人得而诛之。顾飞鹤也这么认为。直到有一天他重生为了司徒神机手下的一个傀儡。顾飞鹤:Σ(°△°|||)︴诶呀我去这玩意居然是个呆萌!
  • 重生之不负流年卿华

    重生之不负流年卿华

    她,一朝重生,羽化成仙。叹前世多少哀愁,今生再报。看狼烟四起,“前世——受过多少磨难,今生——我定如数奉还!”他,救命之恩,她没齿难忘。他显得那么神秘,叫人琢磨不透。“若有朝一日,我并非你所想,你是否还会待我如初?”他是冷漠天神,孤僻冷傲是他的专属,但他却只对她温柔,“你总是那么特别。”他是一国之君,是杀害她的人,同时也是前世伤她最深的人。“是你教会了我如何去爱一个人,你是我唯一爱过的人。”………他、他们,到底谁是谁的过客?沧桑起,琴弦破。问世间情为何物,不负流年卿华。
  • 李山传

    李山传

    惊鸿之物,从未一蹴而成,何况漫天佛陀仙神。
  • 雪樱血月

    雪樱血月

    自靖末以来,西域便出现了煌龙墓的传说。亲眼目睹过异族屠城的高贤,决定为人类的存亡而战斗。可是他并不知道,这并不是异族和人类的斗争,而是源于千年前的那场恩怨……
  • 落单的青春

    落单的青春

    青春是我小说的主题,爱则是青春不变的一个主题。我写青春那一定不可避免的要写到爱。每个年龄对爱都有一种诠释,而站在我的视角看,爱大多时候是莫名其妙的,没有原因的或者是很肤浅的,然而里是这种没有理由的,从肤浅处的来的东西比很多感情都保存得久远。卑微自有卑微存在的理由!二零一二年三月陈昶
  • 跟专家学心理调适

    跟专家学心理调适

    从个人的角度来说,掌握必要的心理学知识,学会为自己的心理健康状况把脉,及时发现自己的心理问题,积极进行调适,把心理问题的危害降低到最小,是成就美好人生的坚实基础。而要做到这一点,离不开心理专家的点拨和指导。找到权威的心理专家,获得正确的心理调适方法,才能确保个人心理的健康状态,同时也为幸福美满的人生提供保障。
  • 三生三世不可忘

    三生三世不可忘

    身为大财团公主,却被迫流落他乡。明明可以隐姓埋名安度余生,却为报仇雪恨走上亡路。活三生人恋三世情三生三世却不忘那仇那恨那人不是不可忘而是不能忘看她如何活出精彩活出传奇
  • 奇妙人体百科(中国学生成长必读百科)

    奇妙人体百科(中国学生成长必读百科)

    人体是世界上最奇妙的机器,要想操纵和使用好这台机器,我们必须要有足够的知识储备。本书将人体“从头到脚,从里到外”那些看得见的看不见的神奇一一进行剖析,让青少年读者亲自领略人体的小秘密和健康的小魔法,在轻松的朗读和不断的发现中,让他们健康、快乐地成长。
  • 网游之妖孽幻术师

    网游之妖孽幻术师

    农家少年、青帮少主、神秘玩家、傲骨清寒、网游大神,没人知道他有多少身份!幻术是什么?若你以为幻术就是魔术,那就错了。真正的幻术,只有悟性超越常人的神才能窥破。梅花烙、桃花瘴、水龙吟、洛神赋、倾城雪……假如你拥有这些极品技能的时候,你会如何做?