登陆注册
8088800000015

第15章 结语

综合前文的分析,现将本研究的基本结论概述如下。

第一,自1999年至2009年,我国宏观经济波动经历4次短周期,日期为1996年6月至2001年12月,2001年12月至2005年4月,2005年4月至2009年5月(按照波动的波谷计算),周期长度大致为4年。

第二,利用时差相关系数法选定的先行指标包括:货币供应量M1、固定资产投资本年新开工项目个数增速、股票成交量增速、固定资产投资增速、商品房销售额增速、生铁产量增速及货物周转量增速等7个指标。一致指标包括进口额增速、发电量增速、水泥产量增速、出口额增速、钢材产量增速、汽车产量增速及能源生产增速等指标。

第三,利用主成分分析法构建先行合成指数和一致合成指数。实践证明,先行合成指数的平均先行期约为2个月,先行合成指数对经济运行具有较好的先导功能(领先宏观经济的变化而变化)和预测功能(预测宏观经济的未来变化趋势)。先行合成指数表明,2009年2月我国宏观经济景气达到谷底,随后开始逐步回升,2010年1月和2月,先行合成指数出现回落。

第四,Probit模型分析我国宏观经济转折点,Probit模型预测2010年3月和2010年4月的经济景气概率,2010年3月概率为0.88,2010年4月为0.72,表明在3月和4月,我国的经济将持续向好,整体经济增长不会出现转折。

程序附录

*BBAlternate enforces the requirement that peaks and troughs alternate。 If we

*have two consecutive turning points of the same type, we take the more extreme

*of the two based upon the values in"x"。

procedure BBAlternate peak trough x startl endl

type seriespeak trough x

type integerstartl endl

local seriescounts

local integer count

local realwmin wmax

*If we have consecutive peaks or consecutive troughs, choose the highest peak and

*lowest trough。 ACC applied to the series PEAK will give a step function which is

*constant between peaks。 For each test value of this series(that is, for each

*run between peaks),we analyze all values for which TROUGH is non zero and pick

*the one that achieves the smallest value for X。

acc peak startl endl counts

do count=0,fix(counts(endl))

sstats(min, smpl=(counts==count。 and。trough))startl endl x>>wmin

set trough startl endl=%if(counts==count。 and。trough, x==wmin, trough)

end do count

*Analogous treatment for analyzing peaks between troughs

acc trough startl endl counts

do count=0,fix(counts(endl))

sstats(max, smpl=(counts==count。 and。peak))startl endl x>>wmax

set peak startl endl=%if(counts==count。 and。peak, x==wmax, peak)

end do count

end

*************************************************************************

*BBRefine refines the dates of the peak and trough dummies based upon the series

*X。 The new dates are the highest(for peaks)or lowest(for troughs)which are

*within 5 periods(controlled by"span"option)of the old dates。

*Notes, peaks and troughs must alternate, and this is checked and the dates

*modified if necessary

procedure BBRefine peak trough x startl endl

type series peak trough x

type integerstartl endl

option integer span 5

local series max min time extract

local integer npt tp

local real tpx

mvfractiles(max=max, min=min, centered, span=2*span+1)x startl+span endl span

*Pad out the max and min series at the ends of the data set

set max startl startl+span-1=max(startl+span)

set max endl-span+1 endl=max(endl-span)

set min startl startl+span-1=min(startl+span)

set min endl-span+1 endl=min(endl-span)

set time startl endl=t

sample(smpl=peak)time startl endl extract 1

compute npt=%nobs

do i=1,npt

compute tp=fix(extract(i))

sstats(max, smpl=(x==max(tp)))tp-span tp+span t>>tpx

compute peak(tp)=0. 0,peak(fix(tpx))=1.0

end do i

sample(smpl=trough)time startl endl extract 1

compute npt=%nobs

do i=1,npt

compute tp=fix(extract(i))

sstats(max, smpl=(x==min(tp)))tp-span tp+span t>>tpx

compute trough(tp)=0. 0,trough(fix(tpx))=1.0

end do i

*Make sure dates alternate

@BBAlternate peak trough x startl endl

end

*************************************************************************

*BBEnforceMinCycle enforces the restriction that a cycle be at least 15 months

*(controlled by mincycle option)peak to peak or trough to trough。 If we run

*across such a situation, the more extreme of the two peak/trough values is

*retained and the other eliminated。

procedure BBEnforceMinCycle peak trough x startl endl

type seriespeak trough x

type integerstartl endl

option integer mincycle 15

local seriestime extract

local integeri p0 p1

set time startl endl=t

sample(smpl=peak)time startl endl extract 1

do i=2,%nobs

compute p1=fix(extract(i)),p0=fix(extract(i-1))

if p1-p0<mincycle

if x(p1)<x(p0)

compute peak(p1)=0. 0

else

compute peak(p0)=0. 0

end do i

@BBAlternate peak trough x startl endl

sample(smpl=trough)time startl endl extract 1

do i=2,%nobs

compute p1=fix(extract(i)),p0=fix(extract(i-1))

if p1-p0<mincycle

if x(p1)>x(p0)

compute trough(p1)=0. 0

else

compute trough(p0)=0. 0

end do i

@BBAlternate peak trough x startl endl

end

*************************************************************************

*BBEnforceMinPhase enforces the restriction that a phase(peak to trough or

*trough to peak)be at least 5 months(controlled by the minphase option)。 If we

*run across such a situation, the later of the two is dropped, the alternation

*rule is reapplied and we rescan the data。 This is repeated until all phases

*mean the minimum length。

procedure BBEnforceMinPhase peak trough x startl endl

type seriespeak trough x

type integerstartl endl

option integer minphase 5

local seriestime extract

local integerntp p1

local realminvalue

*Repeat until the minimum phase is 5 or larger

set time startl endl=t

loop

*Extract the list of turning points into"extract"

sample(smpl=peak+trough)time startl endl extract 1

compute ntp=%nobs

sstats(min)2 ntp extract-extract{1}>>minvalue

if minvalue>=minphase

break

*Classify the shortest phase, and knock it out of its dummy

compute p1=fix(extract(%minent))

if peak(p1)

compute peak(p1)=0. 0

else

compute trough(p1)=0. 0

*Enforce alternation and continue

@BBAlternate peak trough x startl endl

end loop

end

*************************************************************************

*BBEnforceEndPoints eliminates peaks and troughs at both ends which are lower(or

*higher)than values closer to end。

procedure BBEnforceEndPoints peak trough x startl endl

type seriespeak trough x

type integer startl endl

local realtp0

*Keep looping over the front end, eliminating turning points until the first

*turning point is higher(peak)or lower(trough)than the initial value。

loop

sstats(min, smpl=peak+trough)startl endl t>>tp0

if peak(fix(tp0))。 and。x(fix(tp0))<x(startl){compute peak(fix(tp0))=0

next}

else

if trough(fix(tp0))。 and。x(fix(tp0))>x(startl){compute trough(fix(tp0))=0

next}

break

end loop

*Keep looping over the back end, eliminating turning points until the first

*turning point is higher(peak)or lower(trough)than the final value

loop

sstats(max, smpl=peak+trough)startl endl t>>tp0

if peak(fix(tp0))。 and。x(fix(tp0))<x(endl){

compute peak(fix(tp0))=0

next}

else

if trough(fix(tp0))。 and。x(fix(tp0))>x(endl){

compute trough(fix(tp0))=0 next}

break

end loop

end

*************************************************************************

*BBMCD calculates the months of statistical dominance for series x

procedure BBMCD x startl endl

type seriesx

type integerstartl endl

option integer max12

option integer*width

local seriesxsp irreg

local realnum den

filter(type=spencer, width=15,extend=repeat)x startl endl xsp

set irreg startl endl=x xsp

do j=1,max

sstats startl+j endl abs(irreg-irreg{j})>>num abs(xsp-xsp{j})>>den

if num<den{

compute width=j

return}

end do j

disp"No acceptable lag for MCD。 Increase max"

compute width=max

end

*************************************************************************

procedure BBOutput peak trough startl endl

type seriespeak trough

type integerstartl endl

option choiceprint 1 none final all

option choicelevel 1 short long

option stringtitle

local seriestime expeak extrough

local integeri

local integerpeakbase troughbase

local integertroughoffset peakoffset npeak ntrough

if print==1. or。level==1.and。print==2

return

set time startl endl=t

sample(smpl=peak)time startl endl expeak1

compute npeak=%nobs

sample(smpl=trough)time startl endl extrough 1

compute ntrough=%nobs

if extrough(1)<expeak(1)

compute peakbase=3,troughbase=2,troughoffset=0,peakoffset=1

else

compute peakbase=2,troughbase=2,troughoffset=1,peakoffset=0

if level==1{report(action=define)

report(atrow=1,atcol=1,span)title

report(atrow=2,atcol=1)"Peaks""Troughs"

do i=1,npeak

report(atrow=i+peakbase, atcol=1)%datelabel(fix(expeak(i)))

end do i

do i=1,ntrough

report(atrow=i+troughbase, atcol=2)%datelabel(fix(extrough(i)))

end do i

report(action=show)}

else{report(action=define)

report(atrow=1,atcol=1,span)title

report(atrow=2,atcol=1)"Peaks""Peak to Peak""Trough to Peak""Troughs""Trough to Trough""Peak to Trough"

do i=1,npeak

report(atrow=i+peakbase, atcol=1)%datelabel(fix(expeak(i)))

if i>1

report(atrow=i+peakbase, atcol=2)fix(expeak(i)-expeak(i-1))

if i>troughoffset

report(atrow=i+peakbase, atcol=3)fix(expeak(i)-extrough(i-troughoffset))

end do i

do i=1,ntrough

report(atrow=i+troughbase, atcol=4)%datelabel(fix(extrough(i)))

if i>1

report(atrow=i+troughbase, atcol=5)fix(extrough(i)-extrough(i-1))

if i>peakoffset

report(atrow=i+troughbase, atcol=6)fix(extrough(i)-expeak(i-peakoffset))

end do i

report(action=show)}

end

procedure BryBoschan x start end

type seriesx

type integerstart end

option integer ma

option choiceprint 1 none final all

option series*peak

option series*trough

option switchquarterly 0

local integerstartl endl fwidth

local reallpeaksum ltroughsum

local integercenterspan initialspan refinespan mincycle minphase

local seriesxsp d xo xspo x12 max min lpeak ltrough mcdx

local integerBBQuarterly

*Set control parameters for quarterly vs monthly

if。 not。%defined(x){

disp"Syntax:@BryBoschan(options)>>x<<start end"

return}

*Override<<quarterly>>option if the data are quarterly

if quarterly。 or。2:1-1:1==4

compute BBQuarterly=1

else

compute BBQuarterly=0

if BBquarterly

compute centerspan=4,initialspan=2,refinespan=2,mincycle=5,minphase=2

else

compute centerspan=12,initialspan=5,refinespan=5,mincycle=15,minphase=5

inquire(series=x)startl<<start endl<<end

*Step I

*For monthly data, compute a 15 term Spencer MA as the initial estimate of the trend cycle。

*EXTEND=REPEAT allows the filter to be computed over the full range by making pre sample

*values equal to the first observation and post-sample values equal to the last

*observation。 Replace outliers with the Spencer MA value。

*For quarterly data, just take the raw data series

if BBquarterly

set xo startl endl=x

else{

filter(type=spencer, width=15,extend=repeat)x startl endl xsp

set d=x xsp

diff(standardize)d startl endl

set xo startl endl=%if(abs(d)>=3.5,xsp, x)}

*Step II

*For monthly data, do symmetric one year moving averages, for quarterly, just take raw data。

*Do preliminary check for peaks and troughs by seeing which data points are the maximum or

*minimum within a centered eleven month(five quarter)period window(leaving out any

*points near the ends)。

if BBquarterly

set x12 startl endl=xo

else

filter(type=centered, span=centerspan, extend=repeat)xo startl endl x12

mvfractiles(max=max, min=min, centered, span=2*initialspan+1)x12 startl+initialspan endl initialspan

*Pad out the ends of the max and min series

set max startl startl+initialspan-1=max(startl+initialspan)

set max endl-initialspan+1 endl=max(endl-initialspan)

set min startl startl+initialspan-1=min(startl+initialspan)

set min endl-initialspan+1 endl=min(endl-initialspan)

set lpeakstartl endl=t>=startl+initialspan。and。t<=endl-initialspan。and。x12==max

set ltrough startl endl=t>=startl+initialspan。and。t<=endl-initialspan。and。x12==min

*Check for at least one peak or trough

sstats startl endl lpeak>>lpeaksum

sstats startl endl ltrough>>ltroughsum

if lpeaksum==0. 0.and。ltroughsum==0.0

{display

display"Turning Points for Series"+%l(x)

display"****************"

display"No Cycles Found"

display"****************"

display

return}

*If have consecutive peaks or consecutive troughs, choose the highest peak and

*lowest trough。

@BBAlternate lpeak ltrough x12 startl endl

@BBOutput(print=print, title="Step II",level=short)lpeak ltrough startl endl

*Skip steps III and IV for quarterly data

if BBquarterly{compute fwidth=refinespan

branch step5}

*Step III

filter(type=spencer, width=15,extend=repeat)xo startl endl xspo

*Refine turning points using the resmoothed data

@BBRefine(span=refinespan)lpeak ltrough xspo startl endl

@BBAlternate lpeak ltrough x startl endl

*Enforce minimum cycle lengths

@BBEnforceMinCycle(mincycle=mincycle)lpeak ltrough xspo startl endl

@BBOutput(print=print, title="Step III",level=short)lpeak ltrough startl endl

*Step IV

:step4

if%defined(ma)

compute fwidth=ma

else{@BBMCD(max=12,width=fwidth)x startl endl

if fwidth<=2

compute fwidth=3

else

if fwidth<=4

compute fwidth=4

else

if fwidth<=6

compute fwidth=5

else

compute fwidth=6}

filter(width=fwidth, type=centered, extend=repeat)x startl endl mcdx

@BBRefine(span=refinespan)lpeak ltrough mcdx startl endl

@BBAlternate lpeak ltrough x startl endl

@BBOutput(print=print, title="Step IV",level=short)lpeak ltrough startl endl

compute fwidth=%imax(fwidth,4)

*Step V

:step5

@BBRefine(span=fwidth)lpeak ltrough x startl endl

@BBAlternate lpeak ltrough x startl endl

@BBEnforceEndPoints lpeak ltrough x startl endl

@BBEnforceMinCycle(mincycle=mincycle)lpeak ltrough x startl endl

@BBEnforceMinPhase(minphase=minphase)lpeak ltrough x startl endl

@BBOutput(print=print, title="Turning Points for Series"+%l(x),level=long)lpeak ltrough startl endl

if%defined(peak)

set peak startl endl=lpeak

if%defined(trough)

set trough startl endl=ltrough

end

参考资料

1.梁琪,滕建州。中国经济周期波动的经验分析[J]。世界经济,2007(2)。

2.李星。我国商品市场景气转折点的分析与预测[J]。财经理论与实践,2008(11)。

3.陈磊,孔宪丽。转折点判别与经济周期波动态势分析[J]。数量经济技术经济研究,2007(6)。

4.姜向荣。景气指标的筛选方法及运用[J]。统计与决策,2007(2)。

5.冯润民。基于竞争神经网络宏观经济预警指标选取研究[J]。现代管理学,2009(1)。

6.丁文斌。北京先行经济指数研究[J]。山西财经大学学报,2004(8)。

7.Sanjib Bordoloi and Raj Rajesh。Forecasting the Turning Points of the Business Cycles With Leading Indicators in India:A Probit Approach。Paper Prepared for the Singapore Economic Review Conference August 2-4,2007 at Singapore。

同类推荐
  • 永续赢利

    永续赢利

    本书结合大量的案例,实证了成功企业的永续赢利秘诀,分析了失败企业的败局根源,总结归纳出在目前状况下,企业持续发展、持续获利的22条经营秘诀。
  • 中国市场经济发展研究

    中国市场经济发展研究

    本书内容包括:中国社会主义市场经济改革进程特征及价值判断标准、中国社会主义市场化进程中经济增长的周期和总量调控、中国社会主义市场化进程中结构变化和增长的效率。
  • 国有煤炭企业可持续发展研究

    国有煤炭企业可持续发展研究

    坚持科学发展观和建设和谐社会是中国保持20多年快速发燕尾服、国家实力大幅度提升后提出新的旨在保证我国实现可持续发展的重大战略。在可持续发展问题上,资源和环境处于中心地位。煤炭资源是我国经济和社会发展的重要战略资,也是中国全面实现现代化和基础保障。国有煤炭企业是我国煤炭工业中占据着主导地位。国有煤炭企业特殊性的另一个突出表现在于,它是全社会物质资源流钢产量最大的行业之一,也是固体废物排放最多的行业之一。
  • 彭迪先全集

    彭迪先全集

    本书内容包括:战时的日本经济、实用经济学大纲、新货币学讲话、世界经济史纲、经济思想史、货币信用论大纲等。
  • 现代西方经济学名著导读

    现代西方经济学名著导读

    《现代西方经济学名著导读》扼要介绍现代与当代五十本西方经济学代表性论著,涉及经济学研究方法论、微观经济学、宏观经济学、发展经济学、转型经济学发、制度经济学等六个主要领域,内容包括作者简历,主要思想、学术贡献等。
热门推荐
  • Boss妻的复仇日记
  • tf之誓言如此美丽

    tf之誓言如此美丽

    诗家三姐妹因学业来到了重庆,她们是四叶草。她们要去重庆八中上学,没准还会见到tf,她们没有抱太大的希望,没想到真的梦想成真了!
  • Hello校草大人

    Hello校草大人

    【新书已发:《模拟女友:校草大人请留步》】一夜之间,家破人亡,她突然后悔喜欢上他了,当她决定放手,他却突然向她伸出了手,给予她温暖与希望,她突然弄不懂他的用意了,犹豫着要不要放上,他却强劲地拉住她的手,放在自己手上:“安可可,你这辈子只能是我的人!”
  • 阳光陪伴着有你的我

    阳光陪伴着有你的我

    几年前的韩稚冰不够漂亮,不够可爱,不够活泼,她像活在黑暗世界的幽灵,可为什么有人将她从黑暗中解救出来却又把她狠狠的推回去,她在烈火中重生,化为他最重要的人,让他尝试一下从云端跌入谷底的痛楚……
  • 盛世绝爱:倾城猎命师

    盛世绝爱:倾城猎命师

    摄政女王李令月与对头同归于尽后,魂穿大胤智障公主龙瑾,此公主痴恋神武将军拓跋野,得罪了将军的心上人,将军一怒之下将傻子公主易容改面,偷梁换柱,送给神秘恶魔当床奴,从此大胤王朝最尊贵的人儿跌入命运最底层。摄政女王大怒:“欺人太甚!且看我给你报仇,欠了我的给我千倍百倍还回来。”
  • 影响中国学生的传统文化经典:百家姓(诵读篇)

    影响中国学生的传统文化经典:百家姓(诵读篇)

    中国古代的启蒙教材历史悠久,形式多样,《百家姓》是其中较有代表性的一种。中国人有非常浓厚的宗族观念,非常看重自己的姓氏。一个姓氏就是一个宗族的旗帜、象证。早在汉代就有人开始编撰启蒙的姓氏读物,而宋代的《百家姓》则更是家喻户晓,妇孺皆知,成为儿童启蒙的必读之书。
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 维情危机

    维情危机

    结婚两年,老公每次都喜欢蒙上我的眼睛。后来我才知道,他根本就无能。为了测试我的忠诚,他变态的设计我和初恋情人。畸形的婚姻,贪婪扭曲的丈夫,几乎将我逼上绝路。为了报复他,我忍着痛,走向那个他不敢反抗的男人。
  • 在省政府上班

    在省政府上班

    《在省政府上班》是《公务员生存录》系列小说的第一部。讲述了主人公余冰冲过公务员考试的独木桥,进入了省政府工作的经历。既经历了自我迷失的精神困境,也面临了暗潮涌动的虚情假意。最终掌握了在官场生存的终极攻略,在工作中站稳了脚跟,不仅获得了领导的赏识,同时收获了美好的爱情。生活中很多人习惯将公务员等同于“官员”,其实对于那些刚入职的小公务员来,公务员不过是一种职业而已,这个“官场”也只是“职场”。这本书更多的是以记录的方式为我们讲述真实的小公务员在生活与工作中的点点滴滴,为读者呈现一个真实的公务员的生存状态,无意批判。这是本虚构的小说,也是一本公务员的从业指南。
  • 佛说师子素驮娑王断肉经

    佛说师子素驮娑王断肉经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。