登陆注册
7816300000020

第20章 中外数学经典名题(3)

藏盗问题

19世纪初,日本的柳亭中彦写了一本《柳亭记》,书中出现了许多被人们称为藏盗的数学题目,反映了日本对于古代方阵问题的研究有了进一步发展。其中有一题是:在中国和日本边界的中间,备有日本检查船只的关卡,那里有16人,哨所四角各有3个人,四边各有7个人,称7人哨所。有一次,8个海盗苦苦哀求把他们隐藏起来,哨所的队长想了一番,把哨所人员配置改换一下,居然把这些海盗隐藏起来,每边望去仍是7个人,于是人们将这类问题叫藏盗问题。那么,聪明的队长是怎么把海盗藏起来的呢?

原来,角上的一个人顶两个人,因为这个人在角上,从两个方向去数都需数他。因此在各边人数不变的前提下,无论是增加人或减少人,都要在角上想办法。这道题,16人每边7人,现在增加了8人,每边仍保持原人数,那么只要把四个角上各减少2个,挪到边中去就行了。

稀世珍宝

在东京珠宝收藏博览会上展出一棵18K金的圣诞树,在3层塔松形的圣诞树上共镶嵌有1034颗宝石。

这颗圣诞树上的宝石是这样摆放的:如果从顶上往下看,3层圆周上镶嵌的宝石数成等差级数递增;而3层圆锥面的宝石数却按等比级数递增;且第一层的圆周上与圆锥面上的宝石数相等;除此之外,塔松顶上有1颗宝石是独立镶上的。请问,圣诞树的宝石具体是怎样镶嵌的?

假设3层圆周上的宝石数分别为A、B、C,则:

B=A+m,C=A+2m(m为等差系数)

因为第一层圆锥面上的宝石数等于圆周上的宝石数,所以可假设3层圆锥面上的宝石数为A、D、E,那么:

D=nA,E=n2A(n为等比系数)

由于树顶上那颗宝石是独立的,所以:

A+A+m+A+2m+A+nA+n2A=1033

解此方程,只有一种可能:

A(n2+n+4)=1000

3m=33

根据m、n、A均为整数,得:

m=11

n=2

A=100

因此,宝石的镶嵌是这样的:

塔松顶上有1颗宝石;

第一层圆周上100颗宝石,圆锥面上100颗宝石;

第二层圆周上111颗宝石,圆锥面上200颗宝石;

第三层圆周上122颗宝石,圆锥面上400颗宝石。

卖鸡问题

(1)有一家养鸡专业户,一天,父亲让他的三个儿子到市场去卖鸡,父亲说:“这里有大鸡6只,小鸡84只,共90只,老大拿50只,老二30只,老三10只,鸡的价格你们三人商量,但是价格要一致,并且每人卖的钱必须一样多,都是50元。”那么三人各拿大、小鸡多少只,大、小鸡每只各多少元?

先从总数看,90只鸡共卖150元,可设小鸡每只x元,大鸡每只y元。

所以84x+6y=150元

上式除以3,得28x+2y=50,恰好是老二拿鸡数和应该卖的钱数,还剩下小鸡56只,大鸡4只。

如果老大拿的都是小鸡,那么每只小鸡1元,50只小鸡卖50元;老三拿6只小鸡卖6元,4只大鸡44元,每只大鸡11元;老二拿28只小鸡28元,2只大鸡22元,共50元,符合父亲的要求。

如果老大拿49只小鸡,1只大鸡,这样1只小鸡应卖57元(或说7只小鸡卖5元)。1只大鸡要卖15元。老大:49×57+15=50;老二:28×57+2×15=50;老三:7×57+3×15=50。这种分法和卖法也符合父亲的要求。

上面两种分鸡方案和卖法都可以,除此之外,再没有符合父亲要求的分鸡方案与卖法了。

(2)有一次,父亲叫过来两个儿子,对他们说:“这里有大一点的鸡30只,每两只卖20元;有小一点的鸡30只,3只卖20元。老大拿30只大鸡,老二拿30只小点的鸡。”兄弟二人到市场上按照定的价很快卖完了,老大卖了300元,老二卖了200元,共计500元给了父亲。

第二天,父亲又给老大30只大点的鸡,给老二30只小点的鸡,价格不变。兄弟二人到市场卖鸡去了,老二说:“哥哥,我有点事,今天你一个人卖鸡算了。”老大说:“一个人卖两种价格的鸡不方便,还是二人一起卖,卖完之后再去办事吧!”老二说:“这样卖鸡行不行,5只鸡卖40元。”老大一想,大鸡20元卖2只,小鸡20元卖3只,合起来正好是5只鸡卖40元,于是老大就同意了。老二办事走了,老大很快把鸡卖完了,结果只卖480元,少卖了20元。回家给钱看时,父亲见少了20元钱,大发脾气,认为他们乱花钱,等老大把卖鸡的情况告诉父亲,他也迷惑了,怎么会少卖20元钱呢?

事实上,5只一起卖,卖10次已将小点的鸡卖完了,剩下的10只鸡均为大鸡应卖100元,还按5只40元,因此少卖了20元。

三姐妹卖鸡蛋

一个卖鸡蛋的老妇,吩咐三个女儿到市场上去卖90个鸡蛋。她给聪明伶俐的大女儿10个鸡蛋,二女儿30个鸡蛋,三女儿50个鸡蛋,并说道:“你们先商量好价钱,然后就照定好的价钱卖。不能贱卖,而且三个人的卖价还必须相同。但是,我希望你们三个人卖鸡蛋所得的钱一样多。一句话,鸡蛋价钱要一样,卖得的钱也要一样多。除此之外,卖掉所有90个鸡蛋所得的钱不少于90戈比。”问:姑娘们如何完成交给她们的任务?

三姐妹一边朝市场走一边商量,二妹和小妹都请求大姐出主意,大姐想了想说道:

“妹妹们,咱们的鸡蛋这次不要像以前那样10个10个地卖,而要7个7个地卖,每个蛋是一份,每一份定一个价钱,就像妈妈吩咐的,一个戈比也不能少要,三个人都要遵守,每份卖3戈比,你们说怎么样?”

二妹说:“那可太便宜了。”

“不过,我们按7个鸡蛋一份卖完剩下的鸡蛋价钱可以提高。”大姐解释说:“我已经注意到,今天市场上卖鸡蛋的除了我们三人,再没有别人,不存在和我们争主顾的问题,当供不应求时,价钱自然就涨上去了。这样,咱们就是要在剩下的那些蛋上把钱赚回来。”

三妹问:“剩下的鸡蛋卖什么价呢?”

大姐果断地说:“每个鸡蛋要9戈比,就是这个价,急需的买主肯定会买的。”

二妹吃惊地说:“太贵了吧。”

“贵又怎么样,”大姐接着说,“咱们按7个一份卖的鸡蛋不是便宜了吗,有贱就得有贵。”

大家都同意了。

姐妹三人在市场上各自找好位置坐下来卖鸡蛋,由于价钱便宜,买主纷纷聚来,一会儿工夫,按7个一份卖的鸡蛋全卖完了。小妹卖了49个鸡蛋,得到21戈比,还剩下1个鸡蛋;二妹卖出28个鸡蛋,得到12戈比,还剩下2个鸡蛋;大姐只卖了一份7个鸡蛋,得到3戈比,还剩下3个鸡蛋,她剩的最多。

这时,市场上来了一位厨师,她是奉主人之命来买鸡蛋的,她的任务是买10个鸡蛋,因为主人的儿子回家来了,他又特别喜欢吃鸡蛋。厨师在市场上转了转,只看见三个卖鸡蛋的摊子,总共只有6个鸡蛋,必须把这些鸡蛋全买走,即便如此还差着数呢。

女厨师先跑到大姐的摊子前问:“这3个鸡蛋卖多少钱?”

“每个鸡蛋9戈比。”

女厨师十分惊讶,“你怎么了?发疯啦?要这么多钱!”

大姐平静地说:“随你怎么说,少一个钱也不卖,就剩这几个了。”

女厨师又跑到二妹的摊前问:“什么价钱?”

“9戈比一个,就这个价。”

女厨师最后去问小妹:“你的鸡蛋要多少钱?”

小妹回答:“9戈比一个。”

毫无办法,女厨师只好用高价买下了这仅有的6个鸡蛋,她分别付给大姐27戈比,二妹18戈比,小妹9戈比,这样,三姐妹前后两次各自卖鸡蛋所得的钱数都一样,每人30戈比。

三姐妹回到家里,每人交了30戈比给妈妈,并向妈妈详细讲述了卖鸡蛋的经过。母亲非常满意,她的女儿不折不扣地完成了她交付的任务,特别为大女儿的聪明机智感到高兴。

这个问题的解答十分巧妙,其想法突破了常规,将鸡蛋分为按份卖和按个卖两种形式,制定了两种价格。按个卖居然比按份卖价格高得多,以致一个鸡蛋的价格等于3份鸡蛋的价格。只有这样做才能使10个鸡蛋与50个鸡蛋卖上一样的价钱。

如何卖鸡蛋达到预期目的,这确实是个数学问题。必须要先后用两种价钱卖鸡蛋,关键是怎样分份,怎样定价。

如果每份2个鸡蛋或5个鸡蛋,就不存在有零散鸡蛋,份数多少不同,三人卖得的钱也不等。

如果每份3个鸡蛋,仅看30=3×10,50=3×16+2=(3×10)+(3×6+2),便可知二妹卖得的钱还不及小妹的一部分卖得的钱,所以这种分法也不行。同理,由于10=4×2+2,30=4×7+2=(4×2+2)+4×5,以及30=6×5,50=6×8+2=(6×5)+(6×3+2),也可知4个鸡蛋一份或6个鸡蛋一份的分法均不行。

如果每份7个鸡蛋,10=7×1+3,30=7×4+2,50=7×7+1。去掉其公共部分(1份零1个),三人分别剩的是2,7×3+1,7×6。

现在要让卖2个鸡蛋与3份零1个,或6份鸡蛋的价钱一样,即3份鸡蛋的价钱相当于1个鸡蛋的价钱,或说是1份鸡蛋是13个鸡蛋的价钱。这样的话,打算10个鸡蛋卖30戈比,那么每个鸡蛋卖价就是:

30÷(3+13)=9(戈比)

于是每份7个鸡蛋要卖3戈比。90个鸡蛋总共卖90戈比,符合原题要求。

正是据上述道理,大姐才提出卖鸡蛋的正确方案。

一百个和尚分一百个馒头

此题是明代珠算家程大位在其所著《算法综宗》中所设,题目是用诗歌表达的:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几个?”我们可以用假设法。假如全是大和尚,应该分300个馒头,现只有100个馒头,缺200个,少200个的原因是因为有一群小和尚。小和尚3人分1个,一个小和尚吃1/3,比大和尚每人少吃8/3个,那么200个馒头中包含有多少个8/3呢?200∶8/3=75,这75就是小和尚数。那么大和尚数就可想而知了。

换个角度思考此问题:如果这100个和尚全是小和尚,每3人吃一个,则一个吃1/3,100个和尚吃1/3×100=100/3个。余下100-100/3=200/3个馒头,每个大和尚吃3个,即每个大和尚比每个小和尚多吃3-1/3=8/3个,用一个大和尚换一个小和尚时,就要多吃8/3,200/3∶8/3=25(人)。这样,大和尚25人,小和尚75人。

检验:3×25=75(大和尚吃的馒头数);1/3×75=25(小和尚吃的馒头数);75+25=100。

克拉维斯算题

意大利数学家克拉维斯于1583年在《实用算术概论》中设了这样一道题:“父亲对儿子说:‘做对一道题给8分,没做对每道题不但不给分还要扣去5分。’做完26道题后,儿子得了0分,求儿子做对了几道题?”

这道题我们可以用两种不同的方法来解。第一种方法是列方程来解。设儿子做对了X道题,按题意列方程如下:8X-5(26-X)=0;13X=130;所以X=10。那么做错的题就是26-10=16(题)。

另一种方法是假设法。如果26道题全做对了,应该得8×26=208分,这样,每错一题就不是扣5分,而是13分,儿子得0分,做错的题数应是(208-0)÷13=16(题),这样就求出做对的题数了。用算术式来表达即为:

(8×26-0)÷(8+5)=16(题);26-16=10(题)。

阿尔昆算题

英国数学家阿尔昆在《益智题》一书中曾出过这样一道题:有男子、女子、儿童共100人,分100把谷物,若每个男子得3把,每个女子得2把,儿童2人得1把,谷物恰好能分完。求男子、女子、儿童各有多少人?

我们可以通过列三元一次方程组来解这题。设有男子X人,女子Y人,儿童Z人。根据题意列出方程得:X+Y+Z=100(1),3X+2Y+1/2Z=100(2)。(2)式乘以2后减去(1)式得:5X+3Y=100。移项后求得:Y=5/3(20-X)。人数应该是正整数,筛选后,得出以下结果:X(男人)17,14,11,8,5,2;Y(女人)5,10,15,20,25,30;Z(儿童)78,76,74,72,70,68。

欧几里得算题

几何学之父,古希腊数学家欧几里得曾出过这样一道题:螺子和驴驮着谷物并排走在路上,螺子在途中对驴子说:“如果把你驮的谷物给我一袋,咱俩驮的袋数就相等。”请你算一下,它们各自驮了多少袋谷物?我们可以做一下假设。如果螺子给驴一袋,二者就相等,说明螺子驮的谷物是驴的2倍。刚才我们分析,螺子比驴多驮2袋,驴子再给它一袋,螺子比驴多(2+1+1)=4(袋),比驴子多4袋时,同时也是驴子的2倍,可见,这4袋谷物是驴子剩下谷物的1倍。所以我们可以通过计算得到所求的结果:驴子驮的代数为(2+1+1)÷(2-1)+1=5(袋);螺子驮的代数为5+1+1=7(袋)。

诸葛亮调兵

诸葛亮是人人知道的一个传奇式的人物。相传,他在“借东风”之后,名声大振。但吴将中仍有不少人不服气,觉得“借东风”不过是瞎猫撞上死耗子,因此,很想找个机会当面探探深浅。

同类推荐
  • 安徒生童话(上)

    安徒生童话(上)

    关于我所写的童话,我也想说几句我自己的心里话。首先从已经出版成集的《讲给孩子们听的童话》说起,这是我的第一部童话作品集。这部童话作品集出版后,对于它的评价有各种各样的声音。我到现在还很尊重这些声音,虽然不乏批评之声。我很珍惜他们对我所写童话作品的批评,我知道这是他们发自内心的肺腑之言。
  • 资治通鉴故事导读本(上册)

    资治通鉴故事导读本(上册)

    本书精选《资治通鉴》中重大历史事件和重要历史人物,完整详细地交代原委,帮助读者更清楚地了解历史,将其中的精彩故事、人物串联起來,并对知识点进行链接,语言风格符合青少年读者群,让中小学生在阅读的过程中学到历史知识及做人的道理。本书由范毅然编著。
  • 感动中学生的300篇励志故事(青少年阅读故事书系)

    感动中学生的300篇励志故事(青少年阅读故事书系)

    青少年时期是世界观、人生观及心态和性格形成的关键时期,我们对青少年心态的呵护就是对他们最大的关怀。在青少年的成长过程中,要树立他们正确的人生观、要引导他们对真善美的积极追求、要培养他们乐于助人的兴趣。
  • 让青少年学会孝敬的故事(青少年素质养成必读故事)

    让青少年学会孝敬的故事(青少年素质养成必读故事)

    《青少年素质养成必读故事:让青少年学会孝敬的故事》分为理解父母的关心与爱护、理解父母的无私与付出、理解父母的苦心与艰辛、理解父母的平凡与伟大、理解父母的唠叨与批评、理解父母的错误与弱点、从父母身上理解爱的真谛。
  • 青少年应该知道的平原

    青少年应该知道的平原

    本书主要介绍了平原的形成、类型、特点等,并对它的治理开发作了一个简单的介绍。
热门推荐
  • 夏尤凌汐

    夏尤凌汐

    凌汐跟南宫清月是闺密,清月的弟弟,像姐姐表白,南宫清月没有和她一起上高中,凌汐很孤单,在这孤单的时候夏尢像凌汐表白,凌汐上了高中后,又喜欢上了别人……
  • 寻龙密码

    寻龙密码

    从死人堆中爬出的扬州小混混,却成了神州道派的唯一传人。为了寻找已经散开的神州龙脉,他从过去来到了现代,为得是能将龙脉重新聚合。嘻笑怒骂也好,恩怨情仇也罢,他义无返顾的踏上了漫漫的寻龙之路。
  • 午门囧事

    午门囧事

    一切的一切,起源于一碗红烧肉。肉的伟大,肉的光荣。(关于一个莫明其妙穿过来的女人拼了命想穿回去却遭遇一众绝色美男算计阻挠的蹂躏与反蹂躏斗智与斗勇的庐山瀑布汗血泪史。)风啊,您使劲地抽!雷呀,您来的更猛烈些吧!孩子们,请脱掉袜子挥动你们的小脚,胡汉三她又回来了……
  • 别给自己设圈套

    别给自己设圈套

    本书总结出了每个人一生当中可能遇到的最致命的圈套以及最有效的规避和解除方法,让你将人生的珍宝轻松揽入怀中。
  • TFBOYS之愿

    TFBOYS之愿

    幸,幸我这辈子遇见你,愿,愿你这辈子幸福,爱,爱上你我不后悔!
  • EXO之高空中飞翔

    EXO之高空中飞翔

    一开始不是说好了只追吴世勋吗?怎么又蹦出了那么多人?我去!做你的闺蜜真是太辛苦了,有种想跟你绝交的冲动,可,谁叫你是我的闺蜜呢......
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 末世奸商

    末世奸商

    没有人知道他从哪里来,也没有人知道,他将要到哪里去。他总是在别人最需要帮助的时候,出现在他的面前。有的人把他当成,上帝的使者。也有人,将他视为恶魔的信徒。他始终游荡、徘徊在地狱与天堂的交界。以公平,公正,公开,作为自己游走末世的原则。他不是上帝,没有拯救世人的义务。他也不是恶魔,没有毁灭人间的野望。他只是一个商人,一个在末世的夹缝中,挣扎求存的奸商。“嗨!你需要帮助吗?只要付出小小的代价,就能从我这里获得最丰厚的回报哦!”这句话,很快的就成为,他在末世中的口头禅。他就是陈锋,一个理想成为末世之中,最大商人的幸存者。
  • 情壑,我的私人总裁

    情壑,我的私人总裁

    “陈小舟,你只能是我庄子衍的女人。”他禁锢着她,疯狂的嘶磨,直至唇瓣渗血。她冷眼相对,说出了藏在心底多年的秘密,“你知道吗?当年我逃出来的时候,怀着两个月的身孕,孩子被我跑掉了。”她残忍的笑,是捅在他心口的刀子。当年到底发生了什么,让她宁死也要离开?如今,一句道歉,还能抚平她重创的内心吗?她嫣然的笑,“能啊,只要你离开庄家,从此只属于我一个人。”
  • 听风说,你爱我

    听风说,你爱我

    3年前的一场意外,使唐妮嫒"失去了记忆","失去记忆"的妮嫒和她的主治医生白绮祥在一起了,而一直在寻找她的项霆锋因愧疚守护着她,爱着她;3年前那场意外的幕后主使渐渐浮出水面,真相竟然是……