什么叫做“参照系”呢?我们说,火车向前行驶了多少公里,这是相对于地面来讲的。研究火车在地面上的运动,是以地面为参照物的。研究乘客在火车上的运动,就是以火车为参照物的。在参照物上安放一个可以量度运动物体位置的假想的坐标系之后,就叫做参照系。
现在假定有一列火车沿着直线轨道匀速行驶,车厢里有一位乘客向上抛出一个小球,那么这位乘客所看到的小球的运动情况,和他在地面上向上抛出一个小球后所看到的情况是完全一样的。这是因为他的火车参照系相对于地面参照系在做匀速直线运动。
“在两个相互做匀速直线运动的参照系中,力学定律是相同的。”这是伽利略早在17世纪就已经提出来的相对性原理。爱因斯坦把伽利略的相对性原理推展为:“在两个相互做匀速直线运动的参照系中,一切自然定律都是相同的。”
把一个力学定律推展为一切自然定律,这是一个巨大的飞跃,为了实现这个飞跃,整整用了200年。
这200年正是牛顿机械物理学统治的200年。这样,不单是力学实验,连光学实验、电磁学实验,以至任何其他一切实验,都不能测出绝对运动来。一切都是相对的,因此也就否定了绝对空间、绝对时间、绝对运动和光以太的存在。
所谓光速不变原理是指:光在真空中的传播速度是一个不变的常数,它和光源的运动速度没有关系,和观察者的运动速度也没有关系(指的都是匀速直线运动)。
经典物理学对粒子的运动(如炮弹)和波的运动(如声音)都进行了长期的周密的研究,这两种运动的本质是完全不同的。粒子运动是粒子本身在运动,如炮弹;波的运动必须靠介质来传播,如声波是靠空气来传播的。
那么光的传播是属于哪一种运动呢?首先,光在真空中的传播和声音在空气中的传播是不一样的,因为光没有介质。旧物理学原来一直认为光是波的传播方式,介质就是以太。但是麦克尔逊1897年进行的地球在以太中的漂移速度实验已经彻底否定了以太的存在。
那么光是不是像粒子那样靠放射传播的呢?我们来进行一个实验:假如有一艘炮舰,首尾各有一门相同的大炮,发射出的炮弹速度是W,当炮舰以V的匀速向前行驶时,舰首大炮炮弹的速度是W+V,舰尾大炮炮弹的速度是W-V,这就是粒子的速度合成定理。但是光的运动服不服从速度合成定理呢?1054年天文学上发生过一次著名的超新星爆发,残骸就是现在金牛星座中的蟹状星云,如果光线服从速度合成定理,这颗超新星爆发时向着地球方向飞来的物质A发出的光,速度将是光速C加上飞散物质的速度V,而背离地球方向飞去的物质B发出的光,速度将是C-V,那么地球上将先看到A发来的光,按照计算,得等几十年后才能看到B发出来的光。这样,在地球上几年中都能看到这颗遥远的超新星爆发时所发出的强光。然而实际情况却是:这颗超新星爆发时发出的强光,只过了一年多就消失了,就像我国《宋史》上记载的那样:“年余稍没。”这就说明A和B发出的光都是以C的光速向着地球传来的。
光在真空中传递,既不像波,也不像粒子,它只遵循一条特殊的规律:光速不变原理。科学史上第一个想要测定光速的人是伽利略,他和他的助手各举一盏灯站在两个山头上,由于光速太快,和它相比两个山头之间的距离实在太小了,这个测量当然失败了。第一个测定光速获得成功的是1676年丹麦的天文学家罗迈,他通过观测木星和它的卫星这样的天文规模的距离,第一次测出了光的速度,但由于当时仪器不够精密,测得的数值为225000公里/秒。直到1899年,美国科学家麦克尔逊才用他改进了的精密光学仪器测得了光速的最精确值:299796公里/秒。在不用于精确计算时,经常只说它的近似值:每秒30万公里。
这两条基本原理和经典物理学都是势不两立的,特别是光速不变原理,它和牛顿的绝对时间和绝对空间更是水火不容。假若有一条平直的铁路穿过车站,站台两边A、B两点各立有一根柱子,一个手拿信号灯的工人站在A、B的中点C发出一个信号,他将看到:信号以相同速度C通过相同距离同时到达A、B两点。如果在他发出信号的同时,正好有一列火车从他身旁经过,车上坐着的一位乘客将看到:这个信号以C的光速离开自己向火车两头A、B两点飞去,由于火车是向着A点奔去,所以对于他来说,信号到达A点走过的距离短,到达B点的距离长,他将看到信号先到达A点,然后到达B点。
信号到达A和B是不同的两件事,在以地面为参照系的工人看来,这两件事是同时发生的;在以火车为参照系的乘客看来,它们却不是同时发生的。这只是一种纯理论设想,在实际生活中,工人、乘客都不可能用肉眼观察到信号到达A、B两点的时间。而且光速是那样快,对于相距不远的两个目标来说,也根本无法量出信号到达的先后。一个同时,一个不同时,到底哪个对,在经典物理学看来,事物的是非只有一个绝对标准,要么就是对,要么就是错。那么对于这个问题如何判断呢?经典物理学回答不上来了。
爱因斯坦也为这个问题进行了长期的思索。1905年的一天,他终于想通了,他解决了这个既同时又不同时的问题,因此也创立了相对论。
要解决这个问题,爱因斯坦认为首先要解决“什么是同时性”的问题。
如果两件事发生在同一个地点,还容易比较,如果两件事是发生在两个地方呢?不能只是想当然,必须给予严格的定义,赋予它以物理意义。爱因斯坦是这样给同时性下定义的:还是以火车通过车站为例,如果这时突然雷电大作,两个雷电一个击中车头A′,一个击中车尾B′。车头A′遭受雷击时,正好经过站台A点,所以A点的柱子也同时遭受了雷击。车尾B′,遭受雷击时正好经过站台B点,所以B点的柱子也同时遭受了雷击。我们把车头A′和柱子A遭受雷击称为事件Ⅰ,把车尾B′和柱子B遭受雷击称为事件Ⅱ。那么就可以得出定义:“如果柱子A和柱子B遭受雷击时发出的闪光信号同时达到AB的中点C,我们就说,事件Ⅰ和事件Ⅱ对于地面参照系来说是同时发生的。同样,如果这两个闪光信号同时达到A′B′的中点C′,可以说事件Ⅰ和事件Ⅱ对于火车参照系是同时发生的。”
什么是同时性?这就是爱因斯坦在相对论运动学部分第一个小节中解决的问题。
下面再回答既同时又不同时的问题。对于牛顿经典力学是无法回答这个问题的,在爱因斯坦相对论里却成了最基本的原理,那就是:“在两个相互做匀速直线运动的参照系里,对一个参照系同时,对另一个参照系就必然不同时。”地面上C点的铁路工人和火车中C′点的乘客是分别在两个相对做匀速直线运动的不同的参照系中,如果地面上C点铁路工人,看到事件Ⅰ的光信号和事件Ⅱ的光信号同时到达,那么对于行进中的火车中央C′点的乘客来说,因为火车运动是向着A点,离开B点的,事件Ⅰ的光信号到他那里走过的距离近,事件Ⅱ的光信号到他那里走过的距离远,而光速又是不变的,所以他看到事件Ⅰ的光信号比事件Ⅱ的光信号先到达,两者必然是不同时的。
原来,在相对论里,两个地方遭受雷击这两件事,在以地面为参照系的C点上看是同时的,在以火车为参照系的C′点上看就必然不同时,这根本不是什么自相矛盾,而是千真万确的真理。所以爱因斯坦说:“两个地方发生的两件事情没有绝对的同时性。同时性是相对的。”这正是他在相对论运动学第二小节中解决的问题。
同时性是相对的,多么简单的一句话,但这是多么革命的思想,和我们的经验相距多么远,需要多么丰富的想像力!时空观念从此和牛顿的绝对时间和绝对空间决裂了。新的相对论的时空观念建立起来了。
按照牛顿的说法,全宇宙只有一个时钟,它指示的时间就是绝对时间。如果绝对时间是8点钟,那么宇宙间任何地方,无论是在地面上、火车上,还是在其他星球上,通通都是8点钟(这里不考虑地球上经度造成的时间差,绝对时间就是8点,可能在A地8点是在早上,B地8点是在下午)。既然时间是绝对的,同时性当然也是绝对的。如果两件事都发生在8点钟,不管它们是不是发生在同一地点,也不管我们是在地面上看,还是在火车上看,它们通通都是同时的。如果两件事发生在不同的时间,不论它们发生在什么地方,也不管我们是在哪里进行观察,它们通通都是不同时的。这就是牛顿的绝对时间概念,也是几千年来人们所习惯了的、从现实生活中直接获得的关于时间的概念。直到今天,在爱因斯坦的相对论已经发表了99年(还差一年就是100年)之后,可以这样说:地球上大多数没有学过相对论的人,在时间概念上依旧停留在牛顿时代。即使有些已经学过了或者知道了相对论的人,自己也认为已经打破了牛顿的绝对时间概念,但是往往在碰到一些具体问题时,又会糊涂起来,在自觉或不自觉中又回到了牛顿的绝对时间里去。举一个最普通、最简单的看法:一个时钟,不管你把它放在中国还是美国,也不管把它放在火车上还是飞机上,它所显示的时间不都是相同的吗?时间和地点无关,和参照系的运动也无关,这不是明明白白的吗?这不正是牛顿的绝对时间吗?有这个看法是很正常的,它确实是从我们生活经验和实践中产生出来的,但是我们拥有的只是低速运动状态下的经验和实践。牛顿力学也是从低速运动中总结出来的,它的运动三大定律对于低速运动世界确实是有效的,是接近真理的科学定律;但是在高速运动状态下它就成为谬误了。我们坐过每小时100多公里的特快列车,磁悬浮列车最高时速现在也只能达到500多公里;我们坐过每小时1000多公里的超音速飞机,最快的航天飞机速度也不过每小时20000公里,相当于每秒5000多米。可是你坐过每秒钟行驶近30万公里的火车或飞机吗?当然不可能。但是,如果你想像真的坐在了这样一列飞驰的火车上,那么你就会看到:这列火车上的时钟所指示的时间和地面上的时钟所指示的时间会有明显的不同。地面上的人会看到火车乘客手上的表比自己手上的表慢了许多(当然也只能是在想像中)。
正是在这样、也只有在这样高速运动状态下,才可以明白无误地证实时间是相对的:每一个参照系里有它自己的时间标准;两个地点发生的两件事情的同时性也是相对的,每一个参照系里有它自己的同时性标准。