登陆注册
5977500000005

第5章

我们依据这句话,和我们算出来的B的集合,我们又可以把计算出来的B的集合删除一些重复数。

和是11能得到的积:18,24,28

和是17能得到的积:52

和是23能得到的积:42,76……

和是27能得到的积:50,92……

和是29能得到的积:54,78……

和是35能得到的积:96,124……

和是37能得到的积:

因为庞说:“既然你这么说,我现在也知道这两个数字是什么了。”那么由和得出的积也必须是唯一的,由上面知道只有一行是剩下一个数的,那就是和17积52。

那么X和Y分别是4和13。]

100个金币的分配问题

100个金币5个人分,每人提出1种分配方案,按顺序,条件是只要有一半或半数以上的人不同意这个分配方案,则提出分配方案的人就要被杀头,如何分配才能不死?分配的结果如何?

[答案:

1、按照提方案的顺序,分别设5个人为a、b、c、d、e

2、假设a和b都死了,只剩c、d、e;这种情况下,无论如何c和d一块也拿不到,甚至自己的生命都被操纵在e手里。

3、所以、b肯定没有死。

4、再来讨论a死了,只剩b、c、d、e的情况:因为b如果死了,c、d的生命就被e操纵,所以即使b一块也不给c、d,他们也非同意不可。所以如果a死了,结果就是100,0,0,0

5、所以,a只要知道自己死后的情况,就可以提出97,0,1,1,1的方案。]

男孩女孩

有一个大家庭,父母共养有A,B,C,D,E,F,G七个子女,这七个孩子的情况是这样的:

1.A有三个妹妹,

2.B有一个哥哥,

3.C是老三,她有两个妹妹,

4.D有两个弟弟,

5.E管前面两个叫姐姐,

6.F有个弟弟。

从以上的情况,呢知道这七个孩子中哪几个是女孩,哪几个是男孩?

[答案:

从大到小:

1、A 男

2、B 男

3、C 女

4、D 女

5、E 女

6、F 男

7、G 男]

嘉利与珍妮

“我的卧室里有一条蛇!”

“快来呀,厨房着火了!”

“茜茜,你的孩子撞上汽车了,快去市中心医院!”

切莫惊慌,这一切也许都不是真的。事实上,如果这一天正好是4月1日,而你又住在英国,那么,几乎可以肯定它们都不是真的。因为在“愚人节”这一天,他们会跟你开玩笑,捉弄你呢!

这种风俗起源于1545年的一次不幸事件。一位叫卢夫·利尔波的挪威科学家,当时住在英国,正试图揭开飞行的奥秘。

这位科学家的行为有点古怪,但是,他毫无疑问是个聪明人。看来他的飞行试验是成功的,因为国王亨利八世收到了利尔波先生的一封信。在信中,利尔波先生声称,他已经揭开了飞行的秘密,并恭请国王在4月1日驾临威斯敏斯特寺观看他所作的飞行表演。

于是,4月1日这一天,国王和政界的要员们,都站在威斯敏斯特寺外的广场上,等待着利尔波先生从空中飞过。然而,他们什么也没有看到。利尔波倒不是存心开玩笑,他信上说的实际上是实话。他已经掌握了飞行的诀窍,他没有在威斯敏斯特寺露面的原因,是他的飞行器出了故障,撞在一棵树上,而他本人也不幸遇难了。这是科技史上的一个悲剧。

从那以后,英国就形成了一种风俗,把4月1日定为“愚人节”。在这一天,人们常常用说假话的方式互相戏弄。

四百多年来,这种古老的风俗始终相延不衰,以至于在押的囚犯也被允许玩“愚人节”的把戏。

关押在“丛林”监狱里的囚犯,罪行大都比较轻微。嘉利与珍妮姐妹俩,一个因为偷窃超级市场的货物而被捕,一个则因为吸毒而被拘留,两人凑巧关在同一间牢房里。在愚人节这一天,姐妹俩约定:姐姐嘉利在上午说真话,下午说假话;妹妹珍妮在上午说假话,下午说真话。

嘉利与珍妮姐妹俩外貌酷似,只是高矮略有差别,简直分不清谁是姐姐,谁是妹妹。所以,当监狱的看守进牢房提审嘉利时,他也弄糊涂了。但是他知道在这一天姐妹俩的约定。

他问道:“你们俩哪个是嘉利?”“是我!”稍高的一个回答说。“是我!”稍矮的的一个也这样回答。看守更加糊涂了。考虑了一会以后,他提出了一个问题:“现在是几点钟呢?”稍高的一个回答说:“快到正午12点了。”稍矮的一个回答说:“12点已经过了。”根据两人的答话,聪明的看守马上就推断出了哪个是嘉利。

请问:看守到牢房去是在上午,还是在下午?个子稍高的那个是嘉利,还是珍妮?

[答案:

当时上午,个子稍高的是姐姐嘉利。

我们可以用假设法来解此题。

设:当时是下午。

如果当时是下午,那么嘉利是说假话的,珍妮是说真话的,因此当看守问“你们当中哪个是嘉利”时,无论稍高的还是稍矮的都会说“不是我”,而她们俩却都说“是我”。可见当时不是下午,而是上午。

既然当时是上午,那么“快到中午了”这句答话是真话,也即稍高的一个是说了真话;“而上午已经过去了”则是一句假话,也即稍矮的一个说的是假话。由于已知在上午说真话的是嘉利,说假话的是珍妮,所以稍高的一个是嘉利,稍矮的一个是珍妮。]

12个乒乓球的难题

有12个乒乓球,其中有一个不合规格,但不知是轻是重。要求用天平称三次,把这个坏球找出来。

[答案:

这是一个比较难的逻辑推理题。这个题目难就难在不知道不合格的坏球究竟是比合格的好球轻,还是重。要解出这个题目,不仅要熟练地运用各种推理形式,而且还要有一定的机灵劲呢。

用无码天平称乒乓球的重量,每称一次会有几种结果?有三种不同的结果,即左边的重量重于、轻于或者等于右边的重量,为了做到称三次就能把这个不合格的乒乓球找出来,必须把球分成三组(各为四只球)。现在,我们为了解题的方便,把这三组乒乓球分别编号为A组、B组、C组。

首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况:

第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。

其次,从c组中任意取出两个球(例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:

1.天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。

称第三次的时候,可以从C3、C4中任意取出一个球(例如C3),同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。

2.天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。

称第三次的时候,可以从C1、C2中任意取出一个球(例如C1),同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。

以上是第一次称之后出现第一种情况的分析。

第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。

我们假设:A组(有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球:原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。

这时,可以称第二次了。这次称后可能出现的是三种情况:

1.天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。

这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三)B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏球。

2.放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3之中。这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球。

以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球;如果天平不平,那么A4就是坏球(这时A4重于C1)。

3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B2三球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。

以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。

根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,这又该如何推论?请你们试着自己推论一下。]

两张小纸片

Q先生和S先生、P先生在一起做游戏。Q先生用两张小纸片,各写一个数。这两个数都是正整数,差数是1。

他把一张纸片贴在S先生额头上,另一张贴在P先生额头上。于是,两个人只能看见对方额头上的数。

Q先生不断地问:你们谁能猜到自己头上的数吗?S先生说:“我猜不到。”P先生说:“我也猜不到。”S先生又说:“我还是猜不到。”P先生又说:“我也猜不到。”S先生仍然猜不到,P先生也猜不到。S先生和P先生都己经三次猜不到了。可是,到了第四次,S先生喊起来:“我知道了!”P先生也喊道:“我也知道了!”

问:S先生和P先生头上各是什么数?

[答案:

“我猜不到。”这句话里包含了一条重要的信息。

如果P先生头上是1,5先生当然知道自己头上就是2。5先生第一次说“猜不到”,就等于告诉P先生,你头上的数不是1。

这时,如果S先生头上是2,P先生当然知道自己头上应当是3,可是,P先生说“猜不到”,就等于说:S先生,你头上不是2。

第二次S先生又说猜不到,就等于说:P先生头上不是3,如果是这样,我头上一定是4,我就能猜到了。

P先生又说猜不到,说明S先生头上不是4。S先生又说猜不到,说明P先生头上不是5。P先生又说猜不到,说明S先生头上不是6。

S先生为什么这时猜到了呢?原来P先生头上是7。S先生想:我头上既然不是6,他头上是7,我头上当然是8啦!

P先生于是也明白了:他能从自己头上不是6就能猜到是8,当然是因为我头上是7!

实际上,即使两人头上写的是100和101,只要让两人对面反复交流信息,反复说“猜不到”,最后也总能猜到的。

这类问题,还有一个使人迷惑的地方:一开始,当P先生看到对方头上是8时,就肯定知道自己头上不会是1,2,3,4,5,6;而S先生也会知道自己头上不会是1,2,3,4,5。这么说,两人的前几句“猜不到”,互通信息,肯定是没用的了。可是说它没用又不对,因为少了一句,最后便要猜错。]

两个机灵的朋友

菲德尔工长有两个聪明机灵的朋友:S先生和P先生。

一天,菲德尔想考考他们,于是,他便从货架上取出11种规格的螺丝各一只,并按下面的次序摆在桌子上:

M8×10M8×20

M10×25M10×30M10×35

M12×30

M14×40

M16×30M16×40M16×45

M18×40

这里需要说明的是:M后的数字表示直径,×号后的数字表示长度。

摆好后,他把S先生、P先生叫到跟前,告诉他们说:

“我将把我所需要的螺丝的直径与长度分别告诉你们,看你们谁能说出这只螺丝的规格。”

接着,他悄悄把这只螺丝的直径告诉S先生,把长度告诉P先生。

S先生和P先生在桌子前,沉默了一阵。

S先生说:“我不知道这只螺丝的规格。”

P先生也说:“我也不知道这只螺丝的规格。”

随即S先生说:“现在我知道这只螺丝的规格了。”

P先生也说:“我也知道了。”

然后,他们都在手上写了一个规格给菲德尔工长看。菲德尔工长看后,高兴地笑了,原来他们两人写的规格完全一样,这正是自己所需要的那一只。

问:这只螺丝是什么规格?

[答案:

对于聪明的S先生来说,在什么条件下,才会说“我不知道这只螺丝的规格?”显然,这只螺丝不可能是M12×30、M14×40、M18×40。因为这三种直径的螺丝都只有一只,如果这只螺丝是M12×30,或M14×40,或M18×40,那么聪明而且知道螺丝直径的S先生就会立刻说自己知道了。

同样的道理,对于聪明的P先生来说,在什么条件下,才会说“我也不知道这只螺丝的规格“?显然,这只螺丝不可能是M8×10、M8×20、M10×25、M10×35、M16×45。因为这五种长度规格的螺丝各只有一只。

这样,我们可以从11只螺丝中排除了8只,留下的是三种可能性:M10×30、M16×30、M16×40。

下面,可以根据S先生所说的“现在我知道这只螺丝的规格了”这句话来推理。用推理形式来表示:如果这只螺丝是M16×30或M16×40,那么仅仅知道螺丝直径的S先生是不能断定这只螺丝的规格的,然而,S先生知道这只螺丝的规格了,所以,这只螺丝一定是M10×30。]

传教士和野蛮人

三名传教士和三个野蛮人同在一个小河渡口,渡口上只有一条可容两人的小船。问题的目标是要用这条小船把这六个人全部渡到对岸去,条件是在渡河的过程中,河两岸随时都保持传教士人数不少于野蛮人的人数,否则野蛮人会把处于少数的传教士吃掉。这六个人怎样才能安全渡过去?

[答案:

可以这样渡河

1.一名牧师和一个野蛮人过河;

2.留下野蛮人,牧师返回;

3.两个野蛮人过河;

4.一个野蛮人返回;

5.两名牧师过河;

6.一名牧师和一个野蛮人返回;

7.两名牧师过河;

8.一个野蛮人返回;

9.两个野蛮人过河;

10.一个野蛮人返回;

同类推荐
  • 常怀感恩之心

    常怀感恩之心

    本书精选以感谢父爱、母爱等为主题的,适合中学生阅读的精品美文。情动你我,爱让天地广阔如许;美在瞬间,乐得人生感动多多。赏读精品美文,拾取久违的感动,体悟百味人生,感受成长的快乐。本书中精选的美文,让你拓宽阅读视野,提高写作水平。
  • 盛开在掌心的茧花儿

    盛开在掌心的茧花儿

    《盛开在掌心的茧花儿》是一本集爱情、亲情、友情以及陌生人之间真诚相助的故事书。在《盛开在掌心的茧花儿》中,《打死不说我爱你》会告诉你什么是人世间最温暖的爱情;《蝴蝶之家》会告诉你每一双手的相握,都会让世界多一份暖暖的爱意;《你就是那最美的栀子花》和《请到天堂门口来接我》则会告诉你,心有阳光,、无论再困窘的生活都会充盈着快乐与幸福。
  • 惊涛动力:威力无比的海洋能

    惊涛动力:威力无比的海洋能

    世界本来就是充满了未知的,而好奇心正是推动世界前进的重要力量之一。浩瀚无边的海洋,一道道波浪不断涌来,撞击在岩石上,发出天崩地裂的吼声,喷溅着雪白的泡沫。在这蔚蓝的海洋中蕴藏着威力无比的能量,跟随本书一起去探索这惊涛骇浪中的能源宝库吧!
  • 中考英语词汇考点手册

    中考英语词汇考点手册

    词汇是语言学习的重要组成部分。听、说、读、写、译诸项技能的音养与提高,都离不开扎实的词汇基础。为了帮助中考学生突破英语词汇这一大难关,强化薄弱环节,突出重点,我们特编写了本书。
  • 菩提树下的礼物:守住幸福的十个路口

    菩提树下的礼物:守住幸福的十个路口

    本书为你准备了十个礼物,它们可以使你幸福。他们分别是:心态好活得好、简单是幸福的主旋律、轻松的过,快乐的活、把健康留、别跟自己过不去、放弃也是一种幸福、幸福怎能缺少喜好、仁爱是传递幸福的基石、低调一点幸福一些、因为知足,所以幸福。
热门推荐
  • 这个战士有点胖

    这个战士有点胖

    热血、战斗、萌宠、唯一的爱情,一个胖子的血性
  • 在这不安的世界

    在这不安的世界

    当我隔着长桌轻轻的对着老王说理解我觉得我心中万千的感想只化作一声轻叹大抵世间多有女子如此而我的尚未成型的未来便越发不敢妄言了
  • 相思谋:妃常难娶

    相思谋:妃常难娶

    某日某王府张灯结彩,婚礼进行时,突然不知从哪冒出来一个小孩,对着新郎道:“爹爹,今天您的大婚之喜,娘亲让我来还一样东西。”说完提着手中的玉佩在新郎面前晃悠。此话一出,一府宾客哗然,然当大家看清这小孩与新郎如一个模子刻出来的面容时,顿时石化。此时某屋顶,一个绝色女子不耐烦的声音响起:“儿子,事情办完了我们走,别在那磨矶,耽误时间。”新郎一看屋顶上的女子,当下怒火攻心,扔下新娘就往女子所在的方向扑去,吼道:“女人,你给本王站住。”一场爱与被爱的追逐正式开始、、、、、、、
  • 逆时封天

    逆时封天

    来自未来的神秘科技,传神的异世大陆,现实和虚幻中,看林逸如何走出自己的踏天之路。。
  • 问心门

    问心门

    一杯酒,笑看世间芳华;一把琴,奏响浮世之音;问心门,伫立永恒巅峰!
  • 腹黑邪妃要逆天

    腹黑邪妃要逆天

    她本是来自21世纪的第一特工,却惨遭闺蜜背叛,重生归来的她来到了东澜国内遭奸人谋杀惨死的废柴身上,她誓言冲上这个世界的最顶端,他却悄然走入了她本已冷漠的心,
  • 位面交易大唐

    位面交易大唐

    现代青年灵魂穿越到贞观元年,身携位面交易系统的他,在这个盛世的年代掀起了什么样的浪花,他是否能够做到他自己想要的平淡的生活,觉醒他身体的记忆,他又是如何面对他这个身体父亲
  • 青少年应该知道的经营知识

    青少年应该知道的经营知识

    《青少年应该知道的知识小百科》共12册,是专为中国青少年量身定做的一套全方位知识图书。《青少年应该知道的知识小百科》涵盖了青少年成长过程中不可或缺的历史、科技、军事、文化等不同领域知识精华。本丛书旨在启发青少年学习积极性,积极引领中国青少年朋友走向未来,使青少年朋友们能够在轻松与快乐中学习知识、健康成长,是广大青少年学习新知识的理想读物。而这本《青少年应该知道的影视艺术知识》更是系统全面讲解影视知识,使青少年轻松学会。
  • 豪门情债:绝情老公追逃妻

    豪门情债:绝情老公追逃妻

    皇甫信皓突然出现在韶曼薇的面前,第一件事就是要韶家一无所有,为二十年前的一切做出补偿。他却在最后手软,心疼她,爱上她,悄然的付出了他的心。韶曼薇接二连三的接受打击,原以为他是自己可以躲避的港湾,却没发现她是亲手毁了自己幸福的男人。她要让他难过,伤心,一步步的摧毁他仅存的感情,他才是一无所有的人。"
  • 韦尔奇的智慧

    韦尔奇的智慧

    杰克·韦尔奇是通用电气董事长兼CEO。在短短20年间,这位商界传奇人物使GE的市场资本增长30多倍,达到了4500亿美元,排名从世界第10提升到第1。他所推行的“6个西格玛”标准、全球化和电子商务,几乎重新定义了现代企业……