登陆注册
5975900000007

第7章 1用砂粒填满宇宙(6)

为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16…等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(18-2=16)。

规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?

原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。

通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。

规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法?

分析:1、3、7均为奇数,由于目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对于火柴数的奇或偶,也是无法依照己意来控制的。因为(偶-奇=奇,奇-奇=偶),所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。

通则:开局是奇数,先取者必胜,反之,若开局为偶数,则先取者会输。

规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。

分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。

通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。

35韩信点兵

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余8人……刘邦茫然而不知其数。

我们先考虑下列的问题;假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?

首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

中国有一本数学古书《孙子算经》也有类似的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”

答曰:“二十三”

术曰:“三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。”

孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理在近代抽象代数学中占有一席非常重要的地位。

36数学悖论趣谈

悖论是逻辑学的术语,原本是指那些会导致逻辑矛盾的命题或论述。比如大家熟知的《韩非子·难一》中记载的那位卖矛又卖盾的楚国人,声称他的矛锋利无比,什么样的盾都能刺穿,而他的盾坚韧异常,什么样的矛都刺不穿,人问:“以子之矛,陷子之盾,何如?”楚人无言以对。这里关于矛和盾的论述就是一个悖论。悖论这个词在实际使用中,其涵义已被扩大化,常常包括与人的直觉、经验或客观事实相违背的种种问题或论述。因此有时也被称为“佯谬”、“怪论”等。

悖论虽然看似荒诞,但却在数学哲学史上产生过重要影响。一些着名的悖论曾使高明的哲学家与数学家为之震惊,为之绞尽脑汁,并引发了人们长期艰难而深入的思考。可以说,悖论的研究对促进数学思想的深化发展是立过汗马功劳的。

世界上有记载的最早的悖论,是公元前五世纪希腊哲学家芝诺提出的关于运动的着名悖论。在我国公元前三世纪的《庄子·天下篇》中,也记载了几条着名的悖论辨题。这些悖论的提出和解决都与数学有关。在数学史上震撼最大的悖论是英国哲学家罗索于1902年提出的“集合论悖论”,它几乎动摇了整个数学大厦的基础,引发了所谓的“第三次数学危机”。这些严肃的论题在许多数学方法论着作、数学史书籍以及有关的读物中都有记载和讨论。

本文只想谈点轻松的话题。其实,许多数学悖论是饶有趣味的,它不仅可以令你大开眼界,还可以从中享受到无尽的乐趣。面对形形色色富于思考性、趣味性、迷惑性的问题,你必须作一点智力准备,否则可能就会在这悖论迷宫中转不出来了。看看下面的几个小故事,你就会相信此话不假。

第一个故事发生在一位调查员身上。这位调查员受托去A、B、C三所中学调查学生订阅《中学生数学》的情况,他很快统计出,A校男生订阅的比例比女生订阅的比例要大些,对B校和C校的调查也得出同样的结果。于是他拟写了一个简要报道,称由抽取的三所学校的调查数据看,中学生中男生订阅《中学生数学》的比例比女生大。后来,他又把三所学校的学生合起来作了一遍统计复核,匪夷所思的事情发生了,这时他得出的统计结果令他大吃一惊,原来订阅《中学生数学》的所有学生中,女生的比例比男生要大些,怎么会是这样呢?这就象在玩一个魔术,少的变多了,多的变少了。你能帮他找找原因吗?

接下来的这个悖论似乎更简单了。有人把它归入数学中对策论的研究范畴。

一位美国数学家来到一个赌场,随便叫住两个赌客,要教给他们一种既简单又挣钱的赌法。方法是,两个人把身上的钱都掏出采,数一数,谁的钱少就可以赢得钱多的人的全部钱。赌徒甲想,如果我身上的钱比对方多,我就会输掉这些钱,但是,如果对方的钱比我多,我就会赢得多于我带的钱数的钱,所以我赢的肯定要比输的多。而我俩带的钱谁多谁少是随机的,可能性是一半对一半,因此这种赌法对我有利,值得一试。赌徒乙的想法与甲不谋而合。于是两个人都愉快地接受了这位数学家的建议。看来这真是一种生财有道的赌博。

现在的问题是,一场赌博怎么会对双方都有利呢?这象不象一场机会均等的猜硬币正反面的游戏,输了只付1元,而赢了则收2元呢?据说这是个一直让数学家和逻辑学家头疼的问题。《科学美国人》杂志社一直在征求这个问题的答案呢。其实只要认真分析一下,对这个问题也不难给出有说服力的解释。

让我们再来看一个逻辑学的悖论吧。一位数学教授告诉学生,考试将在下周内某一天进行,具体在星期几呢?只有到了考试那天才知道,这是预先料不到的。学生们都有较强的逻辑推理能力,他们想,按教授的说法,不会是星期五考试,因为如果到了星期四还没有考试,那教授说的“只有到了考试那天才知道,这是预先料不到的”这句话就是错的。因此星期五考试可以排除。那就只可能在星期一到星期四考。既然这样,星期四也不可能考,因为到了星期三还没有考试的话,就只能是星期四了,这样的话,也不会是预料不到的。因此星期四考也被排除了。可以用同样的理由推出星期三、星期二、星期一都不可能考试。学生们推出结论后都很高兴,教授的话已经导出矛盾了,轻轻松松地过吧。结果到了下周的星期二,教授宣布考试,学生们都愣住了,怎么严格的推理失效了呢?教授确实兑现了自己说的话,谁也没有能预料到考试的时间。现在请你想一想,学生们的推理究竟错在哪里呢?

关于运动的悖论有很悠久的历史,这里介绍的“蚂蚁与橡皮绳悖论”是一道让你的直觉经受考验的数学趣题。问题是这样的:一只蚂蚁沿着一条长100米的橡皮绳以每秒1厘米的匀速由一端向另一端爬行。每过1秒钟,橡皮绳就拉长100米,比如10秒后,橡皮绳就伸长为1000米了。当然,这个问题是纯数学化的,既假定橡皮绳可任意拉长,并且拉伸是均匀的。

蚂蚁也会不知疲倦地一直往前爬,在绳子均匀拉长时,蚂蚁的位置理所当然地相应均匀向前挪动。现在要问,如此下去,蚂蚁能否最终爬到橡皮绳的另一端?

也许你会认为,蚂蚁爬行的那点可怜的路程远远赶不上橡皮绳成万倍的不断拉长,只怕是离终点越来越远吧!但是千真万确,蚂蚁爬到了终点,奇怪吗?

37放大镜不能把“角”放大

我们看到老人家看报、读书,往往戴上老花眼镜,或者拿上一面放大镜。因为老花眼镜片和放大镜片都能把文字或图画放大,所以老人家用它。

放大镜的确可以把任何东西放大几倍、十几倍甚至几十倍。如果要放大几百、几千倍,甚至几万、几十万、几百万倍,还可以用光学显微镜或者电子显微镜。

可是,有一件东西却无论如何也放大不了。你猜,这是什么东西呢?这就是几何学里面所用到的“角”。“角”的实用价值很大,测量和设计机器都要用到它。“角”是由一点所引两条射线组成的。譬如AOB,就是由两条射线OA和OB组成的。“角”的大小,是指同一点所引两条射线张开的程度。我们已经知道,一个角的大小是用几度、几分、几秒来表示的。

例如,有一个“角”是30°,在放大镜下面看起来,它还是30°。虽然放大镜使画面上的线条变粗、字母变大了,可是,这个角张开的程度,还是没有改变。

为什么呢?

第一,因为经过放大以后,这两条射线的位置,仍旧不变。OB占有水平的位置,放大后仍旧占着水平的位置;OA原来是这么斜着的,放大后它还是这么斜着。所以,张开的程度不变。再则,放大镜只能把东西的各部分成比例地放大,而形状不变。在数学上,原来的图形与放大后的图形,称为“相似形”。相似形的对应角是相等的。因此,放大镜下的AOB,与画面上的AOB,在大小上是相等的,并没有被放大。

最明显不过的例子,就是桌子或者书本的四角,不管怎么放大,它们的四个角仍旧都是直角。因此可以说,随便多少度数的角,“放大”以后度数是不改变的;也就是说,图形是放大了,但“角”是不会被放大镜放大的。

38庄家为什么会赢

所谓“机会型”赌博,就是说胜败完全靠碰运气,它最容易引诱青少年上当。因为表面上看来机会均等,甚至有利于参加者,事实上,几乎所有的“机会型”赌博,机会都不是均等的,总是有利于庄家的。这究竟是为什么呢?

我们来看一种在国外颇为盛行的赌博——“碰运气游戏”。它的规则如下:每个参加者每次先付赌金1元,然后将三个骰子一起掷出。他可以赌某一个点数,譬如赌“1”点。如果三枚骰子中出现一个“1”点,庄家除把赌金1元发还外,再奖1元;如果出现两个“1”点,发还赌金外,再奖2元;如果全是“1”点,那么发还赌金,再奖3元。

看起来,一枚骰子赌“1”点,取胜的可能性是1/6;那么两枚骰子就有1/3的可能性,三枚也就有1/2的可能性。即使是1元对1元的奖励,机会也是均等的,何况还可能有2倍、3倍奖励的可能性,自然是对参加者有利。其实,这只是一个假象。

我们来计算一下,三枚骰子一起掷,会出现怎样的情况?第一枚有6种可能,而对于它的每一种结果,第二枚又有6种可能,第三枚也是如此,所以一共有6×6×6=216种可能结果。在这216种可能结果中,三枚点数各不相同的可能就是6×5×4=120种。三枚点数完全相同的可能只有6种,即都是“1”、“2”……“6”。余下的216-120-6=90种可能,就是三枚中有两枚点数相同的情况。

一个参加者,假设他总是赌“1”点,如果赌了216次,那么他能有几次获奖呢?先来看只有一枚出现“1”点的情况:出现“1”点的骰子可能是第一枚,也可能是第二或第三枚,共有三种可能,而其余两枚不出现“1”点的可能性有5×5=25种,所以共有3×25=75种可能。这75种可能出现时,他可获2元,那么总共可获75×2=150元。再来看出现两枚“1”点的可能性:可以出现在第一和第二枚,也可以是第一和第三枚,还可以是第二和第三枚,也是三种可能;而另一枚骰子不出现“1”点只有5种可能,所以共有15种可能。这时,每次他可获3元,共45元。最后,三枚都出现“1”点的只有一种可能,这时,他可获4元。

这样,216次,他共获150+45+4=199元。但每次先付1元,他共付了216元。所以,一般来说,他会输216-199=17元。

我们再来看看庄家的情况。假设有6人参加赌博,每人分别赌“1”、“2”……“6”点,并且假定进行了216次。庄家每次收进了6元赌金,216次共收了6×216=1296元。那么他会付出多少呢?

从前面的分析中我们已经知道,在216次中有120次结果是三枚骰子点数各不相同的。譬如,出现了“1”、“2”、“3”,于是赌“4”、“5”、“6”点的三位参加者就输了。庄家要付给赢的三家每人2元,共6元,120次,共计6×120=720元。另外有90次是有两枚骰子点数相同的,譬如“1”、“1”、“2”,那么,赌“3”、“4”、“5”、“6”点的就输了,赌“2”点的可得2元,赌“1”点的可得3元,庄家每次付出5元,90次共计5×90=450元。最后,还有6次是三枚骰子点数完全相同的,譬如都是“1”,这时,只有赌“1”点的赢,可得4元,6次,共24元。

所以,庄家一共付出720+450+24=1194元。于是庄家净赚1296-1194=102元,占总金额的79%。

现在,你明白了吗?赌博是没有好处的,千万不要参加赌博。

39同学的生日

你有没有发现,在同班同学中,几乎总是有生日相同的。不信,你可以去统计一下。但是,你能说出为什么吗?一个班级不过40~50人,而一年有365天,生日怎么会“碰”在一起呢?

同类推荐
  • 穿越在异度空间

    穿越在异度空间

    本书讲述了无人能解的秘密事件、令人恐怖的灵异事件、医院里发生灵异事件、民间流传的灵异事件、警察难解的灵异案件等内容。
  • 最佳课堂:天文探谜

    最佳课堂:天文探谜

    本套全书根据全国中小学教学大纲的要求,同时根据创新素质教育的要求,再结合全国中小学各科课本的同步内容编撰而成,是各学科的有益补充和知识范围的深层挖掘,是现代中小学生都必须掌握的知识内容。这些百科未解知识之谜,能够增长中小学生的知识,开拓他们的视野。我们的学校教学都是一些已知的基础文化知识,其内容一般都比较简单和死板,都已有比较科学而清楚的定论,这些知识是前人创造的,也是比较容易掌握的,其实,教学的真正目的是在掌握已知知识的基础上,探索未知的知识,创造未知的领域,不断推动科学文化知识向前发展,使我们真正成为自然的主人。
  • 学生学习习惯培养的方法

    学生学习习惯培养的方法

    学生怎样学习才能达到最好的效果,一直是众多教师和家长非常关注的问题。要解决这个问题,不同的人能提出上千种不同的方法,但最根本的一条,则是大家都认可的,那就是运用良好的学习方法,这是一条行之有效的学习途径。学习方法是指通过许许多多人的学习实践,总结出来的快速掌握知识的方法。因其以学习掌握知识的效率有关,所以受到大家的特别重视。学习方法并没有统一的标准和规定,它因个人条件的不同,选取的方法也有一定的差别。
  • 做一个全能班主任

    做一个全能班主任

    本书所包括的班主任实用案例除了部分内容是班主任如何教育学生外,还包括班主任工作中的其它诸多事项,如何写班主任计划、如何与学校领导沟通、如何与科任教师配合、如何学习各种先进理念、如何处理好班集管理与学生生活等问题也包含其中,内容广泛、全面,以实用为主要旨归,都以案例的形式来体现;全书案例既注重实用性.也注重事例和事迹的真实性和现实性。理论提示、案例过程、案例反恩相结合。还有一些班主任可学的经验和心得,多出自一线教师的真实收获。
  • 网络营销理论与实务

    网络营销理论与实务

    本教材讲述了网络营销中的技术、网上市场调查、网络广告及效果测评等九章内容。各章后均设本章小结、本章网站资源以及思考题三部分。
热门推荐
  • 盛夏流年朝朝

    盛夏流年朝朝

    高考发挥超超常进入北大不是她的错,但与同校的理科状元同进同出就是她的错了;与英俊潇洒的状元关系好不是她的错,但叨扰到状元以及“未来状元”夫人就是她的错了;性格开朗洒脱到接近智障不是她的错,但仗着大脑缺失总让状元帮她收拾烂摊子就是她的错了;…………\r她到底碍着谁了?笨蛋就没有资格追求自己的爱情了吗?修习大学恋爱秘籍,苦练恋爱通关技巧,十八般武艺七十二变法轮番上阵,怎么还是得不到想要的爱情?是她傻她笨她大白痴才会爱上一个不爱她的人,但是这哪里碍着状元您了?是她傻她笨她走了狗屎运才会被一个帅哥看上,但是这又哪里碍着状元您了?——上帝啊,求求你显显灵,让那状元有多远滚多远吧!尊敬的书友,本书选载最精华部分供您阅读。留足悬念,同样精彩!
  • 相思谋:妃常难娶

    相思谋:妃常难娶

    某日某王府张灯结彩,婚礼进行时,突然不知从哪冒出来一个小孩,对着新郎道:“爹爹,今天您的大婚之喜,娘亲让我来还一样东西。”说完提着手中的玉佩在新郎面前晃悠。此话一出,一府宾客哗然,然当大家看清这小孩与新郎如一个模子刻出来的面容时,顿时石化。此时某屋顶,一个绝色女子不耐烦的声音响起:“儿子,事情办完了我们走,别在那磨矶,耽误时间。”新郎一看屋顶上的女子,当下怒火攻心,扔下新娘就往女子所在的方向扑去,吼道:“女人,你给本王站住。”一场爱与被爱的追逐正式开始、、、、、、、
  • 千年千年千年狐

    千年千年千年狐

    “出招吧”眼前不过看上去十二三岁的少年,居高临下的俯看满脸的得瑟,眸中看行云的一丝不屑显示着对自己玄气的绝对霸道。行云在心中冷哼一声,很好,敢算计她,还不知道谁吃亏“看是你的玄气厉害,还是我的暗器霸道”。“没有玄气,还敢上来送命”稀稀疏疏的声音传进行云的耳朵,众目睽睽下一场大战即将拉开,“嘶!”的一声,众人不禁同时露出了惊骇之色,一齐用震撼的目光看向台上。“你到底是谁?”以霎间满室寂静。
  • 唯吾独尊之天下无双

    唯吾独尊之天下无双

    王问天,陨天城三大家族之一的王家少主,但因为无法觉醒玄力而受到冷落,在被坑掉落神秘空间时,获得逆天传承,从此君临天下。
  • 王陆修仙记

    王陆修仙记

    我曾执剑于天剑宗前;我曾炼丹于药师塔中;我曾弹指诛妖邪,一笑动乾坤;……小小梅都城中,少年王陆修仙的故事……
  • 不死不灭剑圣

    不死不灭剑圣

    一人,一剑。卧槽为什么要二十个字为什么丫丫丫丫
  • 伏魔道士下山

    伏魔道士下山

    许枫,自小与师父修习风水玄学、茅山道法。掌握着中华几千年古老奇玄文化的他。运用其能力,化解一个又一个危机。侦破一个又一个悬案。冷寒轩灵异作品《伏魔道士下山》,尽请期待。
  • 云鬼瞳

    云鬼瞳

    天启庙的桃花开了又败,那个名叫李云的孩子五年前从雪都出走……五年后,他手背上那朵黑色的桃花慢慢绽开……身穿一身黒锦衣,腰间别着十把飞刀的少年行走在黑夜里……望眼处,九重天,血衣冷剑怎将歇。易水寒风断骨刃,试问玉颜为谁忧?美人泪,杯中酒,万里孤身志不休。若那风雪忽如花,莫问锦衣何处来。一人一剑上天涯,为君仗剑杀天下。【感谢腾讯文学书评团提供书评支持】
  • 男神老公不请自来:逼婚33天

    男神老公不请自来:逼婚33天

    两年前,她与他一夜错情,但从那晚过后便分道扬镳,再无瓜葛。两年后,她身后忽然多了一个形影不离的尾巴。她吃饭的时候对面桌上坐着的是他,上班的时候老板背后站着的是他,就连她睡觉的时候,自己床上躺着的……还是他!最后,她忍无可忍,一枕头摔在那张性感的人神共愤的脸上,“总裁大人,你到底要做什么!我们已经没有关系了!”他精准无比的接下枕头,随后从口袋中取出一只小盒子,“唔,我只是新买了一只钻戒,想让你帮我品鉴品鉴。”“你看这钻戒,贵吗?”“……贵”她只想让他快点走。“这可是你说的。”他眼睛一亮,于是便举着钻戒,在她面前单膝跪了下来!
  • 千瑰月华

    千瑰月华

    寒凛的月光下,冰冷的玫瑰载着银色的光华。一个围绕血族和血猎展开的阴谋与力量的较量,一场血族与血猎的相爱相杀。命运之轮已经开始转动,谁又能逃脱呢?