And whether the introducing of things so inconceivable be not a reproach to mathematics?
Qu. 23. Whether inconsistencies can be truths? Whether points repugnant and absurd are to be admitted upon any subjects, or in any science? And whether the use of infinites ought to be allowed as a sufficient pretext and apology for the admitting of such points in geometry?
Qu. 24. Whether a quantity be not properly said to be known, when we know its proportion to given quantities? And whether this proportion can be known but by expressions or exponents, either geometrical, algebraical, or arithmetical? And whether expressions in lines or species can be useful but so far forth as they are reducible to numbers?
Qu. 25. Whether the finding out proper expressions or notations of quantity be not the most general character and tendency of the mathematics? And arithmetical operation that which limits and defines their use?
Qu. 26. Whether mathematicians have sufficiently considered the analogy and use of signs? And how far the specific limited nature of things corresponds thereto?
Qu. 27. Whether because, in stating a general case of pure algebra, we are at full liberty to make a character denote either a positive or a negative quantity, or nothing at all, we may therefore, in a geometrical case, limited by hypotheses and reasonings from particular properties and relations of figures, claim the same licence?
Qu. 28. Whether the shifting of the hypothesis, or (as we may call it) the fallacia suppositionis be not a sophism that far and wide infects the modern reasonings, both in the mechanical philosophy and in the abstruse and fine geometry?
Qu. 29. Whether we can form an idea or notion of velocity distinct from and exclusive of its measures, as we can of heat distinct from and exclusive of the degrees on the thermometer by which it is measured? And whether this be not supposed in the reasonings of modern analysts?
Qu. 30. Whether motion can be conceived in a point of space? And if motion cannot, whether velocity can? And if not, whether a first or last velocity can be conceived in a mere limit, either initial or final, of the described space?
Qu. 31. Where there are no increments, whether there can be any ratio of increments? Whether nothings can be considered as proportional to real quantities? Or whether to talk of their proportions be not to talk nonsense? Also in what sense we are to understand the proportion of a surface to a line, of an area to an ordinate?
And whether species or numbers, though properly expressing quantities which are not homogeneous, may yet be said to express their proportion to each other?
Qu. 32. Whether if all assignable circles may be squared, the circle is not, to all intents and purposes, squared as well as the parabola? Of whether a parabolic area can in fact be measured more accurately than a circular?
Qu. 33. Whether it would not be righter to approximate fairly than to endeavour at accuracy by sophisms?
Qu. 34. Whether it would not be more decent to proceed by trials and inductions, than to pretend to demonstrate by false principles?
Qu. 35. Whether there be not a way of arriving at truth, although the principles are not scientific, nor the reasoning just? And whether such a way ought to be called a knack or a science?
Qu. 36. Whether there can be science of the conclusion where there is not evidence of the principles? And whether a man can have evidence of the principles without understanding them? And therefore, whether the mathematicians of the present age act like men of science, in taking so much more pains to apply their principles than to understand them?
Qu. 37. Whether the greatest genius wrestling with false principles may not be foiled? And whether accurate quadratures can be obtained without new postulata or assumptions? And if not, whether those which are intelligible and consistent ought not to be preferred to the contrary? See sect. 28 and 29.
Qu. 38. Whether tedious calculations in algebra and fluxions be the likeliest method to improve the mind? And whether men's being accustomed to reason altogether about mathematical signs and figures doth not make them at a loss how to reason without them?
Qu. 39. Whether, whatever readiness analysts acquire in stating a problem, or finding apt expressions for mathematical quantities, the same doth necessarily infer a proportionable ability in conceiving and expressing other matters?
Qu. 40. Whether it be not a general case or rule, that one and the same coefficient dividing equal products gives equal quotients? And yet whether such coefficient can be interpreted by o or nothing? Or whether any one will say that if the equation 2 o = 5 o be divided by o , the quotients on both sides are equal? Whether therefore a case may not be general with respect to all quantities and yet not extend to nothings, or include the case of nothing? And whether the bringing nothing under the notion of quantity may not have betrayed men into false reasoning?
Qu. 41. Whether in the most general reasonings about equalities and proportions men may not demonstrate as well as in geometry? Whether in such demonstrations they are not obliged to the same strict reasoning as in geometry? And whether such their reasonings are not deduced from the same axioms with those in geometry? Whether therefore algebra be not as truly a science as geometry?