登陆注册
15290300000030

第30章

First let the luminous body be appearing on the horizon at the point H, and let KM be reflected to H, and let the plane in which A is, determined by the triangle HKM, be produced. Then the section of the sphere will be a great circle. Let it be A (for it makes no difference which of the planes passing through the line HK and determined by the triangle KMH is produced). Now the lines drawn from H and K to a point on the semicircle A are in a certain ratio to one another, and no lines drawn from the same points to another point on that semicircle can have the same ratio. For since both the points H and K and the line KH are given, the line MH will be given too;consequently the ratio of the line MH to the line MK will be given too. So M will touch a given circumference. Let this be NM. Then the intersection of the circumferences is given, and the same ratio cannot hold between lines in the same plane drawn from the same points to any other circumference but MN.

Draw a line DB outside of the figure and divide it so that D:B=MH:MK. But MH is greater than MK since the reflection of the cone is over the greater angle (for it subtends the greater angle of the triangle KMH). Therefore D is greater than B. Then add to B a line Z such that B+Z:D=D:B. Then make another line having the same ratio to B as KH has to Z, and join MI.

Then I is the pole of the circle on which the lines from K fall. For the ratio of D to IM is the same as that of Z to KH and of B to KI. If not, let D be in the same ratio to a line indifferently lesser or greater than IM, and let this line be IP. Then HK and KI and IP will have the same ratios to one another as Z, B, and D. But the ratios between Z, B, and D were such that Z+B:D=D: B. Therefore IH:IP=IP:IK. Now, if the points K, H be joined with the point P by the lines HP, KP, these lines will be to one another as IH is to IP, for the sides of the triangles HIP, KPI about the angle I are homologous. Therefore, HP too will be to KP as HI is to IP. But this is also the ratio of MH to MK, for the ratio both of HI to IP and of MH to MK is the same as that of D to B. Therefore, from the points H, K there will have been drawn lines with the same ratio to one another, not only to the circumference MN but to another point as well, which is impossible. Since then D cannot bear that ratio to any line either lesser or greater than IM (the proof being in either case the same), it follows that it must stand in that ratio to MIitself. Therefore as MI is to IK so IH will be to MI and finally MH to MK.

If, then, a circle be described with I as pole at the distance MI it will touch all the angles which the lines from H and K make by their reflection. If not, it can be shown, as before, that lines drawn to different points in the semicircle will have the same ratio to one another, which was impossible. If, then, the semicircle A be revolved about the diameter HKI, the lines reflected from the points H, K at the point M will have the same ratio, and will make the angle KMH equal, in every plane. Further, the angle which HM and MImake with HI will always be the same. So there are a number of triangles on HI and KI equal to the triangles HMI and KMI. Their perpendiculars will fall on HI at the same point and will be equal.

Let O be the point on which they fall. Then O is the centre of the circle, half of which, MN, is cut off by the horizon. (See diagram.)Next let the horizon be ABG but let H have risen above the horizon. Let the axis now be HI. The proof will be the same for the rest as before, but the pole I of the circle will be below the horizon AG since the point H has risen above the horizon. But the pole, and the centre of the circle, and the centre of that circle (namely HI)which now determines the position of the sun are on the same line. But since KH lies above the diameter AG, the centre will be at O on the line KI below the plane of the circle AG determined the position of the sun before. So the segment YX which is above the horizon will be less than a semicircle. For YXM was a semicircle and it has now been cut off by the horizon AG. So part of it, YM, will be invisible when the sun has risen above the horizon, and the segment visible will be smallest when the sun is on the meridian; for the higher H is the lower the pole and the centre of the circle will be.

同类推荐
  • 伤寒捷诀

    伤寒捷诀

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 净土极信录

    净土极信录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 祭张公洞二首

    祭张公洞二首

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 洞玄灵宝八节斋宿启仪

    洞玄灵宝八节斋宿启仪

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 禅宗指掌

    禅宗指掌

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
热门推荐
  • 尚书

    尚书

    《尚书》是我国最早的一部历史文献汇编,也是最早的一部历史典籍,它的“典”、“谟”、“训”、“诰”、“誓”、“命”六体,有的是讲演辞,有的是命令、宣言,有的是谈话记录。《尚书》为我们研究我国原始社会末期和夏商周奴隶社会历史,留下了珍贵的资料。
  • 刑帝志

    刑帝志

    东土大陆,分为三大帝国:天历帝国、元殊帝国、宝鼎帝国;天历帝国军事最盛,元殊帝国彊土最大,宝鼎帝国最为富饶;纪历1059年,天历帝国再一次改朝换代,赵氏被废,云氏上位;当正忙碌于新帝登基时,一个与朝堂联系似有似无的少年悄然离开天历帝国,去往元殊;三年后,少年又出现在一辆行驶往天历的马车之上;你忘了吗?不,我没有!我回来了。
  • 愿时光不可再回首

    愿时光不可再回首

    愿时光不可再回首。在这个井喷的时代,同样井喷着我们90后。我的故事,似曾相识。
  • 逆天小丫鬟:邪少爷的傲娇妻

    逆天小丫鬟:邪少爷的傲娇妻

    云小芽最大的梦想,就是成为薪水丰厚的高等婢女,攒钱帮娘亲还债;可一场莫名其妙的强暴,却让她陷进了一个又一个陷阱。大少爷的温柔关怀,二少爷的霸道挚爱,江湖豪侠的倾心相待,她吃不消啊!面对他的宠幸,她悄然而去,不被尊重的爱,她不要。“外面的世界比待在我身边更好?”他眼冒寒光的问。她果断点头,“当然!”“所以你情愿在外面浪迹一生?”他咬牙切齿,又问。得到了所有,却失去了她,这一切便没有了存在的意义。强制的手段,舍不得在她身上使,他只能耍赖了。他将她禁锢在怀内,咬着她的耳珠低语,“想走,从我的尸体上踏过去……”
  • 寻爱物语

    寻爱物语

    爱恋如同精灵,辛苦追寻的一路上,遍寻不到,却在转角瞬间忽现,不经意间降临世间。呐,那个时刻到来的时候,你可愿与我共赴一场素年锦时的盛宴。
  • 全能医王

    全能医王

    包治包好,妇科,内科,外科,没有他解决不了的问题,女人,达官,富豪,全都蜂拥而至,逍遥都市,就看我全能医王大展身手。
  • 凰权倾天下之绝世三小姐

    凰权倾天下之绝世三小姐

    凰权天下,风云动乱!她,东辰帝国四大超级世家之首——帝家唯一的嫡女,如此显赫的身份却是个笑话,心智不足,不能修炼,一朝惨死,当清冷的眸子再次睁开,她已是21世纪杀手之王,冷峻,狂傲,翻手为云,覆手为雨!掀起滔天巨浪,召唤神兽,夺取神器,纵横风云,睥睨天下!他绝色妖孽,冷血入骨,手段狠辣,却独独对她这个小家伙,情有独钟。某女:“我们不熟。“某男作势脱衣,无赖道:“刚穿上衣服就不认识我了,难道要我再脱给你看吗?”某女:.”滚!”————————————————————————————————这是漓鸢第一次写文,如果写得不好请见谅,我会加油的!!!大家多多支持哦!!!
  • 爆宠顽劣小王妃

    爆宠顽劣小王妃

    “自打我入府以来啊,就独得王爷恩宠,我跟王爷说,一定要雨露均沾~可是王爷他非是不听呀!就宠我!就宠我!就宠我!都把我宠到天上和太阳肩并肩了!”乔子凡面不红心不跳,面对横刀夺爱的小三三,不要动刀,不要动剑,她动动小嘴儿就能把人气到尼姑庵!此话传到王爷耳朵里,某王爷勾唇坏笑:“阿凡回来,该洞房了!”一年前,她是帝王亲赐的王妃,大婚之日却被他以衣代人娶进了门!一年后,面对穷追不舍的某王爷,她一边跑一边心惊肉跳的开口:“兔子还不吃窝边草呢……”某王爷眸光温柔,嗓音低沉魅惑:“兔子急了还会咬人呢!”
  • 帝君无耻:强宠腹黑小毒后

    帝君无耻:强宠腹黑小毒后

    她是玩毒的祖宗,看似温良实则腹黑他是天生的王者,惊才绝艳狠辣无情卖萌=3=“麻麻,什么叫宫斗呀?”“就是,跟一群寂寞难耐饥渴难止如狼似虎的女人们勾心斗角死去活来直到把这些不安分的女人一个个踩在脚下压在身下全都整垮!”悬疑=_=两年前皇后因通/奸罪而被废弃出宫,两年后她劈开时间的裂缝穿越而来,带着身份不明的半路儿子与重重疑惑强势回宫,却发现事实远非她所听到的那样……到底是谁想害她谁要护她,谁在暗处操控了这一场阴谋诡计,谁又要挑起这一场横尸遍野的杀伐?【一句话总结】这其实就是一个拥有毒化异能的毒舌女穿越之后辛酸血泪洒一地的忠犬帝君腹黑儿子养成史!
  • 妖剑无双

    妖剑无双

    全家被屠,他卧薪尝胆,吃尽苦头。为报父仇,他练就举世无双的超级妖剑!