登陆注册
7816300000025

第25章 数学中七个“千年大奖问题”

20世纪是数学大发展的一个世纪。数学的许多重大难题得到圆满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。

计算机的出现是20世纪数学发展的重大成就,同时极大地推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫·希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。

效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是很高的,但他们的这项行动并没有引起世界数学界的共同关注。

2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立700万美元的大奖基金,每个“千年大奖问题”的解决都可获得100万美元的奖励。克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

“世纪难题”之一:P(多项式算法)与NP(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。晚会主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。你向那里扫视,并且发现晚会主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,13717421这个数可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器验证这是否是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证的,如没有这样的提示则需要花费大量时间来求解,这被看做逻辑和计算机科学中最突出的问题之一。它是美国科学家斯蒂文·考克于1971年陈述的。

“世纪难题”之二:霍奇猜想

此难题由苏格兰数学家W·霍奇在1950年提出。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块黏合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广,最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

“世纪难题”之三:庞加莱猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在100年以前,法国数学家庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

“世纪难题”之四:黎曼假设

我们已经知道有些数具有不能表示为两个更小的数的乘积的特殊性质,例如2、3、5、7等等。这样的数称为素数。它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式,然而,19世纪德国数学家黎曼观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s)的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的15亿个解验证过,证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

“世纪难题”之五:杨-米尔理论

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

“世纪难题”之六:纳威厄-斯托克斯方程

起伏的波浪跟随着我们正在湖中蜿蜒穿梭的小船,湍急的气流跟随着现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳威厄-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳威厄-斯托克斯方程中的奥秘。

“世纪难题”之七:波奇和斯温纳顿-戴雅猜想

数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。欧几里得曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,波奇和斯温纳顿-戴雅猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解);相反,如果z(1)不等于0,那么只存在有限多个这样的点。

同类推荐
  • 西游记故事

    西游记故事

    西游记》是我国古典四大名著之一,描写的是孙悟空、猪八戒、沙和尚保护唐僧西天取经、历经九九八十一难的传奇历险故事。它向人们展示了一个绚丽多彩的神魔世界,人们无不在作者丰富而大胆的艺术想象面前惊叹不已。它以丰富奇特的艺术想象,生动曲折的故事情节,栩栩如生的人物形象,幽默诙谐的语言,构筑了一座独具特色的艺术宫殿。本书故事,很适合青少年读者阅读。
  • 蓝宝石案(福尔摩斯探案全集)

    蓝宝石案(福尔摩斯探案全集)

    《福尔摩斯探案全集》可谓是开辟了侦探小说历史“黄金时代”的不朽经典,一百多年来被译成57种文字,风靡全世界,是历史上最受读者推崇,绝对不能错过的侦探小说。从《血字的研究》诞生到现在的一百多年间,福尔摩斯打遍天下无敌手,影响力早已超越推理一隅,成为人们心中神探的代名词。本书遴选《福尔摩斯探案全集》中最具代表性、最具影响力的几篇奉献给大家。愿故事中匪夷所思的事件,扑朔迷离的案情,心思缜密的推理,惊奇刺激的冒险给大家带来美的享受。
  • 女孩最喜欢读的108个好故事

    女孩最喜欢读的108个好故事

    本书为女孩们展示出一个令人向往的故事世界,其中不乏世界著名童话故事、进取故事、励志故事等。好故事犹如一杯陈年的老洒,愈久弥香。我们真诚地希望这本书能够在孩子的心中生根发芽,伴随孩子健康、快乐地成长。好故事是孩子手中的花盆,用勤劳、善良把自己的生话美化;好故事是旅行者的背囊,承載着对美好旅程的梦想和希望;好故事是女孩脚下的皮球,如影相随,亲密无间,伴随女孩快快地长大。
  • 小学生谜语歇后语绕口令天天读

    小学生谜语歇后语绕口令天天读

    谜语以形象生动、巧妙的比喻,描绘事物的特征。猜谜语可以锻炼小学生的联想、推理和归纳能力。歇后语幽默风趣,表意深刻,学习歇后语可以丰富小学生的语言库,也能为写作文增添一抹亮色。绕口令可以锻炼小学生的舌、唇、齿相互配合的技巧,是培养小学生语言表达能力的有效途径。本书共分三篇,分别精选了经典的谜语、歇后语和绕口令,每小节后设置了拓展性小栏目,能有效地开发小学生的智力,提高小学生的语言表达能力。
  • 王者的血脉

    王者的血脉

    本书从作家拍摄的近十万张照片中精选编录而成,以图文并茂的形式记录了蒙古牧羊犬的传说、起源、分布和现状,讲述着草原上古老的传说和奇异的故事。
热门推荐
  • 月影幻城录

    月影幻城录

    在一个安宁的小镇里一群小孩哼着一首街知巷闻没有诗名的诗句,诗句是这样哼的“幻影银枪显神威,蛟龙冲天凌云剑,飞鹤一出命归天,大内皇宫流光刺,妙手一指判生死,落魄书生三落榜,千夫所指温柔乡,万年道行一朝葬,夜半月影索魂剑,雪山之巅现幻城。”
  • 一本书读懂情商

    一本书读懂情商

    《一本书读懂情商》会对你大有裨益。通过了解情商的本质,破解其在生活中运用的窍门及从内到外的开发自己的情商,我们即可在多年积累的智力、教育、经历这三者间获取平衡。
  • 一本书读通世界地理

    一本书读通世界地理

    本书以独特的视角为读者选取了当今世界最著名的上百个不可不知的地方,以山川、河流、盆地、岳陵、沙漠、瀑布等为分界点,分块成章,使读者一目了解,更可以直接进入自己喜欢的地方。
  • tfboys之不可恋

    tfboys之不可恋

    夏日的邂逅完美了少年们的青春,苦涩的爱恋得不到众人的认可,是坚守25岁的承诺,还是不顾一切的疯狂?相拥着承诺,别怪我懦弱,情不容你我,舍我护你而活。——《不可说》
  • 九剑封仙

    九剑封仙

    那一年,指尖划过的是你那如雪的肌肤,那一年,眼中看见的是你那消散的身躯。坠入红尘,承受生死轮回之苦,只为寻找你的身影。
  • 魔法巧克力店

    魔法巧克力店

    “欢迎光临~魔法巧克力店~”店主。“这里能实现你的任何愿望。但是……我的巧克力可是很贵的。”“XXX!没事吧?”XXX。“恩。只是有点腿软……”XXX。“爱面子的大小姐”XXX。“你这一身是怎么回事?”xxx。“一个顾客送的。”XXX。“很适合你。”XXX。“XXX一如既往的心口不一样~”XXX。“笑~”XXX。
  • 误仁之晓

    误仁之晓

    紫色曼妙的心境,如梦绮丽....五彩斑斓的一群蝴蝶翩翩起舞,周围芳香四溢....漫天飞舞的你们要带她去往哪里?
  • 般若花

    般若花

    有一本神奇的书,记载了数个不为人知的秘密。前世今生,今生今世,我们又因为那冥冥中的缘分,或者一刹那间心意的改变,让命运的轮盘往未知的方向变动......世事无常,有人说天道不仁,以万物为刍狗。而我看到的,却是一个不断徘徊在拯救与被拯救的世界......众生善恶意动,一经身受果报,便痛心悔改,复出无忌,再作恶便加倍受难......如鱼入网,复出还自入......我这一生,从遇见他起,便要天翻地覆......
  • 情缘三生只为你

    情缘三生只为你

    今世10年宠,一昭离别——再遇万年前。重逢代表着命运的齿轮将再次转动,今生该何去何从。再见洛轩已是来这未知世界1年后,沐月莲也适应了这里的生活。相爱的人再遇,相知相爱水到渠成,然而前世种种却也今生再续。面对强敌“执子之手,上穷碧落下黄泉,生死相随”“神女归,天下平”且看他们如何与命运对抗,相守今生。【本文一对一,小虐怡情】
  • 犹记多情

    犹记多情

    一个本就是无情之人偏生要纵情,最后反倒落得个凄惨。一个情多的可以和这漫天繁星同等,却想要去忘情,最后人情两空。“琼华,你可曾心系与我?”“不曾”