登陆注册
7816300000024

第24章 不“数”不知道,一“数”吓一跳(2)

毕达哥拉斯故事发生在公元前5世纪,那一日爱琴海上恶浪滔天,在风雨中飘摇的木船上,一伙道貌岸然的年轻学者把他们的同学希帕索斯身捆石头抛入了大海,制造了数学史上的一桩特大冤案,指挥这场凶案的正是这些年轻学者的老师,古希腊赫赫有名的大学问家毕达哥拉斯(公元前580年-公元前501年)。毕老夫子是当时希腊政治、科学和宗教的统治集团“友谊联盟”的领袖,该集团由300多位有社会地位、有学问的人士组成。当时是奴隶制社会,“友谊联盟”内部岂有友谊可言,一切以毕达哥拉斯的是非为是非,其他人必须服从,顺之者生,逆之者亡。在数学上,他们形成了影响深远的毕达哥拉斯学派,证明了勾股定理、三角形内角和为180°等重要数学定理,首先提出黄金分割和正多边形与正多面体等精彩概念,对古代的数学发展做出了巨大贡献。他们的旗帜上写着“万物皆数”(也翻译成“数统治着宇宙”),他们说的“数”指的只是自然数或正分数。

公元前470年,毕达哥拉斯的学生希帕索斯请教老师如下的问题:

边长为1的正方形,对角线的长是多少?

事实上,按老师证明的勾股定理,对角线的长l应满足12+12=l2,即l应该是这样的一个自然数或正分数,它的平方等于2。

但是,12=1,22=4,32=9,…,所以l不是自然数。设l=pq,pq是既约正分数,则应有

l2=p2q2=2,p2=2q2(1)

由(1)知p是偶数,令p=2k,k是自然数,则

4k2=2q2,2k2=q2(2)

由(2)知q是偶数,从而p与q有公因数2,与pq是既约分数相违。

正是上述这一问题和导致的矛盾激怒了权威毕达哥拉斯,更要命的是动摇了当时被尊为神圣真理的信念——数只有自然数和正有理数两种。希帕索斯提出对角线问题的挑战性和叛逆性,使得友谊联盟必置希帕索斯于死地,以捍卫他们关于数的既定信念。

正方形的对角线不能没有长度,这是任何人都承认的事实,正是这条直观具体的对角线的客观存在与毕达哥拉斯时代的数学观念之间发生了上述不可调和的矛盾和冲突。杀死一个希帕索斯问题仍然未得到解决,当时人们的思想水平受历史背景和科学水平的局限,几乎人人信奉毕达哥拉斯学派的关于宇宙万物皆自然数或分数的教条,这好似当初人们都相信托勒密太阳绕地球转的地心学说一样,除了无知和对名人权威的盲目崇拜之外,也与大家不善于抽象思维和严格地逻辑推理,一切都与粗糙的直观感觉有关。

数学史上称勾股定理在“万物皆数”(仅承认自然数和分数是数)的信仰统治下算不出正方形对角线的长这一数学困惑为第一次数学危机。

后来数学家把毕达哥拉斯学派所称的数为有理数,这在一定程度上照顾了这位在数学史上做出大贡献的前辈的面子,也迎合了一般人的心理和直觉。上面已严格证明边长为1的正方形之对角线的长不是有理数。称不是有理数的实数为无理数,希帕索斯是发现无理数的第一人。从“友谊联盟”的观点看,无理数是逻辑推理生出的一只怪蛋!再后来许多数学家对无理数的概念和理论做了大量的工作,给出了无理数的准确定义和性质,这件事一直到19世纪才基本完工,代表人物有戴德金、罗素、康托尔和维尔斯特拉斯等人。

由于无理数的引入,排除了第一次数学危机,或者我们应当庆幸第一次数学危机来得早,使无理数这个数学中的主角之一早日登上了数学的舞台。我们应当为希帕索斯喊冤叫屈,佩服其造反精神。相传精明的希帕索斯身高1.41米,体重恰为141磅(约64千克),他这些生理指标暗示他是2的化身,这些传说的真伪已无从考查,人们姑妄谈之,我们姑妄听之,但有一点丝毫不可姑妄,那就是科学精神绝非信仰,科学是批判的、疑问的、创造的、严谨的和求实的,科学工作中不容忍迷信和崇拜。

第二次数学危机

牛顿与莱布尼茨初创微积分时,有些基本概念和细节没来得及加以严格地定义和论证,微积分本来就是讨论无穷过程和极限过程的科学,与人们有史以来习惯了的初等数学有本质区别。从现代高等数学的教学经验来看,即使高等数学已经经过两三百年的改造与完备化,大学一年级的同学接受微积分的思想和概念仍然十分困难,对其中很多概念,例如导数概念,仍然存有类似拒绝和排斥的心理,更何况牛顿与莱布尼茨是破天荒第一次向世人表述微积分!

贝克莱是爱尔兰科克郡的地方主教(1734年)、哲学家。他针对牛顿微积分中的一些不严格之处,发表了一篇叫做《分析学家,或致一位不信神的数学家》的文章,“分析学家”的主要矛头对着牛顿,“不信神的数学家”则攻击哈雷和莱布尼茨。当然,贝克莱的非难也得到了不少人的支持,其中不乏有名的数学家,例如法国著名数学家罗尔和荷兰数学家纽文斯。罗尔就说过“微积分是巧妙的谬论的汇集”,但是罗尔本人在微积分上也做出了许多工作,例如作为微分学基本定理的罗尔定理。贝克莱对牛顿的许多批评还是切中要害的。

下面引用牛顿的手稿《流数简论》中的话,看看当初牛顿在他的微积分中是如何使用“瞬”这个概念而引起贝克莱们的诘难的。

牛顿写道:

设有二物体A与B同时分别从a、b两点以速度p与q移动,所描画的线段为x与y,若A、B作非匀速运动,A从a点移动到c,速度为p的A在某一瞬描画出无限小线段cd=p×o,B在相同时刻从b点移动至g点,在同一瞬内将描画线段gh=q×o。

现设x、y之间的关系方程为

x3-abx+a3-dyy=0(1)

我们可用x+po和y+qo分别代替x与y代入(1)得

x3+3poxx+3ppoox+p3o3-dyy-2dqoy

-dqqoo-abx-abpo+a3=0(2)

3poxx+3ppoox+p3o3-2dqoy-dqqoo-abpo=0(3)

其中含o的项为无限小,略之即得

3pxx-abp-2dqy=0(4)

从现代微积分的观点来审视,(4)的结论是完全正确的,如果把p与q按牛顿当年的记号,分别写成x·与y·,则(4)变成

3x2x·-abx·-2dyy·=0

再引用当年莱布尼茨的记号x·=dxdt,y·=dydt,则得

3x2dxdt-abdxdt-2dydydt=0,

为了不混淆,把d写改写成c,则得

3x2dx-abdx-2cydy=0

(3x2-ab)dx-2cydy=0

dydx=3x2-ab2cy(5)

(5)是现代常微分方程论中的一个一阶可分离变量的方程。可见微分方程,即含未知函数y(x)与其导数(牛顿当时称为流数)的方程是牛顿创立微积分时同时产生的,微积分与微分方程是孪生姊妹,微分方程这一数学中心学科的首创权亦应归于牛顿名下。

下面是贝克莱在《分析学家》一书中对牛顿的《流数简论》的批评:

“这种方法究竟是否清楚,是否没有矛盾且可以加以证明,或者相反,只是一种含糊的、令人反感的和靠不住的方法?我将以最公正的方式来提出这样的质疑,以便让你们,让每一位正直的读者做出自己的判断。”

贝克莱的这些质问的确事出有因,上面牛顿对瞬o没有数学定义,一会儿让它作除数,可见o不是零,一会儿把它忽略掉,又认为o为零,这里边似有需要澄清的矛盾。

由于运用牛顿—莱布尼茨的微积分方法总能得出正确结论,所以牛-莱坚信微积分是科学,必须反击贝克莱的攻击,发动微积分保卫战。牛顿、莱布尼茨等人纷纷著文还击贝克莱,无奈由于不能建立严密牢靠的基础,对“瞬”、“流数”等关键词给不出令人不可置疑的定义,所以未能及时驳倒贝克莱,这就是震惊数学界的第二次数学危机。

当然,真理是在牛顿们手里,挑战者贝克莱与第一次数学危机的挑战者希帕索斯不一样,贝氏是出于保守和宗教的偏见行事的,而不是为数学真理而争而论,希帕索斯则是数学上敢于与保守的学说决裂,锐意进取,为创立新的思想体系死不悔改的革新派,是企图跳出传统框架的“异教徒”。

经过柯西、欧拉、波尔察诺和外尔斯特拉斯等众多数学家的努力建设,修筑了微积分的坚实的基础,第二次数学危机才算彻底克服。

微积分的思想博大精深,例如无穷小和微商等,不仅牛顿、莱布尼茨时代,就是今日,也还是个值得细究的问题,它们究竟是实在的东西,还是一种观念,仍然可以讨论;事实上,一种数学概念,可能只是一种解决问题的手段或思维方法,这未必是唯心主义,数学当中莫非不能发明新技术或推理计算的艺术吗?

第三次数学危机

1919年,科学家罗素提出如下的理发师悖论:

村子里仅一名理发师,且村子里的男人都需要刮胡子,理发约定:“给且只给自己不给自己刮胡子的人刮胡子。”

有好事者问理发师:“理发师先生,你自己的胡子谁来刮?”

理发无言以对。因为如果理发师说“我自己的胡子自己刮”,那么根据他与大家的约定,理发师不能给自己刮胡子,即这时他不该给自己刮胡子;如果理发师说“我的胡子不自己刮”,那么根据他与大家的约定,理发师应给自己刮胡子。可见理发师怎么回答也不行!

上述理发悖论可以稍微数学化地来表述,设集合

B={自己刮胡子的人}

若理发师B,即理发师是自己刮胡子的人,但由“约定”,他不该给理发师刮胡子,即理发师B,矛盾!若理发师B,即理发师不自己刮胡子,由“约定”,他应给自己刮胡子,即理发师B,矛盾!

罗素进一步把上述理发师悖论变成下面的一个数学悖论,称为罗素悖论:

“设B={集合A|AA},问BB还是BB?”

显然B≠O;若BB,由B的定义,B是B中的一元素时,B应有性质BB,矛盾!于是这里发生了无论如何摆脱不了矛盾的荒唐局面!

在罗素表述悖论时,字字句句都未违反康托尔朴素集合论的观点,为什么出现了自相矛盾的事呢?要害是允许写BB,即谈某些集合自己是自己的元素,亦即允许我们前面提出的“皮囊悖论”的存在;为了排除罗素悖论,保卫已建成的数学大厦,数学家策墨罗、弗兰克尔等抛出一套所谓公理集合公理系统,按他们的公理规定,禁谈BB,从而解除了第三次数学危机。

第三次数学危机出现的前夕,数学界一派升平乐观气氛,1900年,庞加莱在第二次国际数学家大会上自信而兴奋地宣称:“我们可以说,现在的数学已达到了绝对的严格。”过不了几年,罗素悖论犹如晴天霹雳,使数学界一片哗然,希尔伯特惊呼:“在数学这个号称可靠性与真理性的模范里,每个人所学、所教、所用的概念及结构和推理方法,竟导出不合理结果;如果数学思考也失灵的话,那么我们到哪里去找可靠性和真理性呢?”

第一次、第二次和第三次数学危机的出现和排除使数学家们对数学的认识更为清醒了,人们有了思想准备,也许还有第四次、第五次数学危机乃至第n次(n≥3);但可以相信,人类有能力排除任何数学危机,而且,每次数学危机爆发之日,就是新的数学概念、新的数学理论孕育之时,随着危机的排除,数学则会得到划时代的进展与突破。

同类推荐
  • 冰心儿童文学全集:诗歌小说卷

    冰心儿童文学全集:诗歌小说卷

    本书收录了《可爱的》、《修养》、《我的秘密》等19首诗歌《最后的安息》、《一个兵丁》、《离家的一年》等13篇小说。
  • 植物成语:爆笑成语

    植物成语:爆笑成语

    绝对实用 绝对幽默。此系列是为中小学生量身定做的一整套趣味成语学习书。用有趣的动漫图例诠释成语,便于小读者巧记知识:既能轻松理解成语含义,又能通过例句学以致用。此外,还为读者增加了趣味科普知识栏目,扩大小读者的知识。
  • 从故事中学会孝敬父母(教青少年为人处事的故事宝库)

    从故事中学会孝敬父母(教青少年为人处事的故事宝库)

    中华民族有五千年悠久的历史,在这源远流长的历史长河中,无数古圣先贤以至德垂宪万世。在上古时代,有三位皇帝:尧、舜、禹非常著名,他们均因德行至大而受四方举荐登上帝位。
  • 气节不改(中华美德)

    气节不改(中华美德)

    中华美德的形成和发展历经五千年,内容博大而精深。中国是文明古国、礼仪之邦,重德行、贵礼仪。自古以来,中华传统美德始终是中华民族赖以生存的道德根基和思想基础,是中华民族发展的精神支柱和文化动力。青少年时期是品德形成的重要时期,对于以后的道德观的树立有着极大的影响,因此,从青少年时期就要给他们正确的引导,使之逐渐形成正确的道德认识、道德情感、道德行为和道德意志。本书通过故事告诉青少年孝、义、节、礼等传统道德规范和行为准则。在青少年学习传统文化的同时,也重新认识了“中国的美”。这对外来文化充斥审美和阅读的今天,有着一种增强民族自豪感,了解中华文化,从浮躁到宁静的“回归”的意义。
  • 选一个人去天国

    选一个人去天国

    《选一个人去天国》曾获全国优秀儿童文学奖。故事讲述了几个山村少年之间如何从开始的陌生、敌视到最后相互接纳并逐渐产生友谊与亲情的过程,以“我”的立场与周遭的世界进行互动,在感受和参与“成长”的过程中,自己的心灵也不断饱满起来。故事中,刘春光为了救“我”,而被“牦牛河”洪水卷走,但“我们”却都相信,刘春光在“天国之渡”,“我们”一定可以找得到他。应该说,故事是以悲剧收尾,但除了哀伤以外,我们却更能感受到一种美好的希望的力量对人心的振奋。
热门推荐
  • 唯武独尊

    唯武独尊

    这是一个武道昌荣的世界!武者以武魂入道,悟生死,夺轮回,逆天而行。陆秋,一个二十一世界的游戏宅男,因为一场意外来到了这个神奇的世界,并成为了中州大陆大夏国陆家的一名私生子。这场意外让他如愿觉醒了武魂,更让他拥有了一个与众不同的神奇武魂。且看他如何利用这个神奇武魂傲啸群雄,称霸大陆,屠神灭魔,成就一代传奇!
  • 趁一切还来得及,做一个快乐的自己

    趁一切还来得及,做一个快乐的自己

    人生在世,谁都希望自己活得幸福,幸福的人生是一次成功的旅行。拥有快乐的心情你就会感到生活的美好,也只有理解了快乐的真谛,才可能拥有真正的幸福人生。会享受人生的人,不会在意拥有多少财富,不会在意住房大小、薪水多少、职位高低,也不会在意成功或失败。
  • 传说中的剑圣

    传说中的剑圣

    被异世界的一名魔法少女在练习召唤魔法时召唤错误造成的不可控传送门传送到异世界,身怀九种魔法,寻找梦境中的第四维系空间。“在遥远的东方,当黎明第一道曙光穿越悲鸣峡谷时,第四维系空间的大门将向你敞开...”。在经历种种磨练,到达悲鸣峡谷,获得被遗忘的剑圣的传承,以异世传承者(的剑圣)的身份游历于大陆,最终到达天界......
  • 复仇

    复仇

    南宫幽栀与哥哥的父亲母亲相继去世,竟是谋杀。此后他们踏上复仇之路,一路结实好友······
  • 路过风景

    路过风景

    这世界没有什么是永恒的,即使是神也得不到。即使如此,你还会愿意陪我一起寻找永远吗?如果你愿意,那我便愿意从我的世界里出来。可是,我的世界很小,小到它已装不下你,你还愿意吗?如果你还愿意,那么我便愿意向你打开我的世界,虽然,抱歉,它已经装满了另一个人……虽然我知道你喜欢着另一个人,可是,请允许我仍旧固执地喜欢着你……请原谅我喜欢你,却无法向你敞开我的世界,因为,它,已找到那个,愿意陪它,寻找永恒的人,而且,它,认生……林:爱,就是你喜欢风景,我就努力成为你的风景……叶:爱,就是你是风,我就是追风者;你是景,我就是摄影人……
  • 为一张脸去养一身伤

    为一张脸去养一身伤

    “和你们在一起的时光大概是我一生中最开心的时光,慢慢的我发现我越来越离不开你们了”权析瑾看着对面的四个少年说“权析瑾”吴亦凡喊道“嗯?”“不管一生路有多长,我们都会伴你走下去”吴亦凡鹿晗张艺兴边伯贤异口同声的说她又笑了,她笑的很开心,很开心
  • 恶魔校草的独家小甜心

    恶魔校草的独家小甜心

    我叫苏朵朵,是一名高中生,一直以来过着平静的日子。有一天,我突然接到了一所贵族学院的通知书;为了不辜负爸妈对我的期望,我便同意了。可是,命运跟我开了个很大的玩笑,让我惹了不该惹的人,看我一介平民将如何应对呢。而我以后的日子注定不会平凡了......
  • 樱花恋语

    樱花恋语

    “我以前一直不明白,樱花这么脆弱,随风摇摆、见风凋零,为什么会被当做警徽的标志。直到遇见你,我才明白,是我小看了他。“
  • 楚妃谋略

    楚妃谋略

    五年痛苦隐忍,只为助他登上高位,但登基之后,他却下令灭她全家,赐她毒酒,甚至斩杀了他们的儿子!她恨,她悔,却只能含恨上流着血泪的眸!幸得老天垂怜,让她得以重生。除渣男,斗恶女,她步步为营,含笑将前世仇人亲手送上西天!惩姨娘,治公主,她精谋细算,悠然送害她妒她之人打入黄泉!重活一世,她不为情不为爱,只为护住自己的至亲。但她怎么也没有想到,擅长算计人心的自己,最后还是被某妖孽男算走了自己的心!
  • 封竹往事之梦里不知身是客

    封竹往事之梦里不知身是客

    曾经我们以为拥有全世界,后来,发现拥有的不过只有我们自己。拥有的失去了,信任的背叛了,你会怎么办?每个人的心底都有一道悬崖,我们害怕跳下去,以为会粉身碎骨,真正跳下去才发现那是另一个世界,不是粉身碎骨,而是脱胎换骨。岳灵犀说:“我真恨自己认识你这么晚。”白夕说:“你认错人了,我从来没见过你。”结尽同心缔尽缘,此生虽短意缠绵。与君再世相逢日,玉树临风一少年。