登陆注册
9206100000001

第1章 生命的奥秘

生命是怎样诞生的

原始的地球

40亿年前,地球上形成了原始的海洋,当时,海水的温度很高,随着水温的逐渐下降,生命的诞生才具备了必要的外部条件。不过,大气的情况依然很糟糕,空气中几乎没有氧,这样,最早出现的原始生命只能是不需要氧气的厌氧性生物。而且,由于缺乏氧气,地球上空不可能形成臭氧层,离开了臭氧层的阻挡,紫外线威胁着脆弱的生命,于是,原始的生命只好龟缩在十几米甚至几十米深的海中生活。

原核生物的出现

大约在38亿年前至35亿年前,地球上出现了细菌和蓝绿藻等原核生物。由于蓝绿藻能进行光合作用而放出氧气,因此大气中逐渐有了氧气。

真核生物的出现

大约距今19亿前至12亿年前,地球上出现了具有细胞核、叶绿体和线粒体的真核细胞,它们能进行光合作用。

爬行动物

爬行动物的头骨和四肢骨的形态构造和生理机能更能适应陆地生活。

哺乳动物

原始的哺乳动物经过漫长的进化,体外长出了皮毛,皮下脂肪组织保持体温,而且汗腺能蒸发散热。

多数树鼩由于拇指同其他指不相对,所以抓不住东西。灵长类的手能够抓住东西。古猿的手指较长,拇指能和其余四指相对,是动物界最灵巧的手。而人类的手不仅可以抓住东西,制造工具,还能做出各种手势。

人类的诞生

整个动物界的发展都为人类的诞生做了充分的准备。而最终促使猿脱离动物状态而诞生人类的关键是劳动,这使得手的进化和语言的进化成为可能。

什么是基因

“遗传因子”是怎样定义的

基因,是指携带有遗传信息的DNA或RNA序列,也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。

基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是基因能够“突变”,突变绝大多数会导致疾病,另外的一小部分是非致病突变。非致病突变给自然选择带来了原始材料,使生物可以在自然选择中被选择出最适合自然的个体。

基因被发现之谜

1866年,奥地利神甫孟德尔通过豌豆的杂交实验,发现花的颜色的遗传变化是有规律的,推测出这是遗传因子起作用的结果,人们把这个遗传因子叫做基因。后来美国生物学家摩尔用果蝇做杂交实验,证明了基因是在细胞核的染色体上。接着,科学家们发现了染色体中的DNA分子,沃森和克里克发现了DNA双螺旋结构。随后人们弄清DNA上面有许多基因,就是它控制着花的颜色、人的血型等生物的特征。

基因为什么会变异

基因变异是指基因组DNA分子发生的突然的可遗传的变异。从分子水平上看,基因变异是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种隐定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做变异基因。于是后代的表现中也就突然地出现祖先从未有的新性状。例如英国女王维多利亚家族在她以前没有发现过血友病的病人,但是她的一个儿子患了血友病,成了她家族中第一个患血友病的成员。后来,又在她的外孙中出现了几个血友病病人。很显然,在她的父亲或母亲中产生了一个血友病基因的突变。这个突变基因传给了她,而她是杂合子,所以表现型仍是正常的,但却通过她传给了她的儿子。基因变异的后果除如上所述形成致病基因引起遗传病外,还可造成死胎、自然流产和出生后夭折等,称为致死性突变;当然也可能对人体并无影响,仅仅造成正常人体间的遗传学差异;甚至可能给个体的生存带来一定的好处。

科普乐园

科学家曾预测人类的基因总数是10万个,而实际预算发现只有3~4万个。这个数字只不过是大肠杆菌的10倍。酵母菌的4倍,果蝇的2倍。

1990年10月,国际人类基因组计划启动,这是生命科学的“阿波罗登月计划”——测定人体23对染色体上的32亿个碱基对序列。我国1999年获准加入,参加了其中1%测序任务,2001年2月12日由美国、英国、法国、日本、德国及中国六个国家科学家共同宣布,人类基因组草图已基本完成。这将给人类进一步了解自身秘密,攻克各种疑难顽症提供极大的帮助。

细胞是怎样组成的

细胞的形状

所有生物体都由称为细胞的微小单位构成,细胞大小不一,通常只有0.01厘米上下。最简单的生物是个单细胞体,例如细菌,人的身体却包含50多万亿个细胞。

1665年,英国自然科学家胡克利用显微镜观察软木薄片,看到许多互相紧靠的微小隔室,宛如修道院里修士住的一间间小室,那些就是细胞。后来生物学家发现,细胞是生物体共同的基本结构。动、植物体内的细胞各司其职,分工合作,使生物体发挥功能。每个细胞是微小的生物单位,会摄食、呼吸、增殖;收到其他细胞的信息会有反应,本身也可发出信息。科学家怎样知道细胞的内部结构呢?一般用胭脂红、结晶紫等染色剂把细胞的各部分染色,再用显微镜观察。细胞种类繁多,但是有共同的特征:中央的细胞核周围是液体,称为细胞质,液内又有一些其他物质。整个细胞由细胞膜包裹。

细胞是怎样组成的——显微镜

什么是干细胞

干细胞是具有自我复制和多向分化潜能的原始细胞,是机体的起源细胞,是形成人体各种组织器官的原始细胞。

什么是造血干细胞?

造血干细胞是所有造血细胞和免疫细胞的起源细胞,具有自我更新、多向分化和归巢潜能。造血干细胞主要存在于骨髓、胚胎肝、脐带血以及动员的外周血中。它不仅可以分化为红细胞、白细胞、血小板,还可跨系统分化为各种组织器官的细胞,因此是多功能干细胞。

什么是脐带血干细胞?

脐带血是指新生婴儿脐带被结扎后存留在脐带和胎盘中的血液。虽然每个婴儿脐带中只有少量的血,但这些血液中含有大量的干细胞,是成体干细胞的主要来源之一。与骨髓干细胞和外周血干细胞相比,新生儿脐带血干细胞的异体排斥反应小,免疫原性低,再生能力和速度是前者的10~20倍。

干细胞有哪些伟大的作用

我们的身体是由许许多多细胞构成的,这些细胞又是由胚胎细胞经过不断地分裂、增殖,慢慢长出头、躯干和四肢,长出神经、心脏、肝等器官。我们又都是从一个细胞——受精卵长成的,这个受精卵分裂成多个细胞,构成胚胎,胚胎细胞是原始细胞,是所有细胞的源泉和主干,所以称为干细胞,人们用它做种子,培育出各种器官。另外干细胞技术可以治疗肝病、糖尿病、白血病等疾病,人们用它解决了许多医学难题。

是什么构成了生命的蓝图

1869年,医学研究生、瑞士青年米歇尔,正在德国一家医学院实验室里,清洗一大堆沾满脓血的绷带,他将这些脓细胞收集起来,进行研究,发现了核糖核酸这种遗传物质。后来人们发现,从病毒细菌到大型的哺乳动物,直到人类,都有核酸这种遗传物质,正是它勾勒出生命的蓝图。

血型有哪些分类

血型是指血细胞膜上特异性抗原的类型。红细胞、白细胞、血小板、组织细胞等都有血型。通常指的血型是红细胞血型。

红细胞血型包括:ABO、Rh、MNS(S)、P等。ABO血型中根据A、B抗原的有无分成A、B、AB、O型四种。Rh血型分Rh阴性血型和Rh阳性血型,我国汉族人群中Rh阴性者不到1%,少数民族Rh阴性血型较多。

血型是由什么决定的

我们的血细胞上的蛋白质不同,它是由染色体上的一对基因控制的。控制血型基因的染色体,一个来自于父亲,另一个来自于母亲。

科普乐园

细胞读取基因的信息,按密码合成蛋白质,然后蛋白质承担各种生命活动。由于基因改变排列顺序,就可以生产不同的蛋白质,这样三四万的基因就可以编译10~20万的蛋白质了。

什么是克隆

克隆的定义

克隆是英文clone的音译,就是不经过精子和卵细胞结合,而是从身体中取出细胞,让它不断分裂,有一个细胞变成两个,两个变成四个,直到发育成新个体或细胞群,因为新个体或细胞群保留了亲代的全部基因,所以与亲代一模一样,这种通过身体细胞获得新个体的方法就是克隆。

“多利”羊的诞生

1996年8月在英国出生了世界上第一头克隆绵羊多利。多利羊是怎样来到这个世界上的呢?

科学绝取出黑脸绵羊的卵细胞,去掉细胞核,把白绵羊的身体细胞中的细胞核放进去,构成新的卵细胞,把它放在另一只黑脸绵羊的子宫中,长成胚胎后取出,又转移到第三只黑脸绵羊的子宫中,发育成克隆绵羊多利。多利长得不像“代孕的妈妈”黑脸绵羊,而跟提供细胞核的白绵羊长得一摸一样。

胎儿需要怎样的生存环境

生命的延续

女性在成年后,每个月都会定期排出一个卵细胞,称为卵子。如果这个卵细胞能与男性的镜子细胞成功结合,就会成为受精卵。这个完整的受精卵在母亲的腹中生长发育,9个月后,婴儿就出生了,生命就这样不断地延续下去。

在妈妈肚子里呼吸

胎儿在出生前要在妈妈的肚子里“生活”9~10个月。在此期间,胎盘通过脐带连着胎儿的身体,给胎儿提供营养及氧气,吸收胎儿所产生的废物。胎盘还是一个防御有害物质入侵的屏障呢。

呱呱坠地

婴儿刚生下来时,通常会声音响亮地大哭不止。这是因为婴儿一出子宫,之前和母体相连的部分被断开了,没有母体为其提供氧气,婴儿就迫切地需要空气进行呼吸。

第一声啼哭

据研究,新生儿吸第一口气所用的力,要比平常呼吸所用的力大4倍。健康的新生儿大多再出生后几秒钟内就会吸气,又是甚至在脐带切断之前就会呼吸。小宝宝的第一声啼哭,实际上就是他们呼出的第一口气。

什么是“试管婴儿”

“试管婴儿”的原理

“试管婴儿”是让精子和卵子在试管中结合而成为受精卵,然后再把它(在体外受精的新的小生命)送回女方的子宫里(胚卵移植术),让其在子宫腔里发育成熟,与正常受孕妇女一样,怀孕到足月,正常分娩出婴儿。这一技术的产生给那些可以产生正常精子、卵子但由于某些原因却无法生育的夫妇带来了福音,现在这一技术已在我国一些地方开展。

“试管婴儿”要在试管里“住”多久

卵子取出后,与精子在试管内共同孵育,每个卵子约需10万条精子。受精后,受精卵分裂形成早早期胚胎,即2~8个分裂球时即可进行胚胎移植(ET),此时约在采卵后48小时,此时间也可根据具体情况稍加以变动,如推后一天,这时也可能更利于优选胚胎。如果过早,宫腔内环境反而可能不利于接受胚胎。一般在刺激周期的前一周期,在门诊进行试验移植,以了解子宫的方位,子宫颈和子宫体间的角度及子官腔长度,并对子宫颈稍加扩张。移植时消毒外阴后,窥阴器暴露宫颈,擦净,再次用培养液擦子宫颈和穹窿及子宫颈管,将子宫颈管内粘液尽量去净。动作应尽量轻柔以减少对子宫肌肉的刺激。用特殊的移植管注入胚胎。进入宫腔,于距宫底0.5cm处注入胚胎,等待1分钟后,将头转动90°以甩掉未能滴下的一滴液体,再将导管缓慢撤出。导管取出后还要在显微镜下检查胚胎有未带出。移植后患者可以仰卧,臀部抬高,子宫很前屈者也可采取俯卧位,目的是使注入的胚胎停留在子宫腔的上方。静卧约3~6小时,可以排尿,避免尿液滞留。移植当日注射HCG5000国际单位及******30mg,以后常规每日注射******,如14天后尿HCG阴性即停止注射,妊娠者继续直到B超可见胎心后再逐步减量。对卵泡过多,可能致成卵巢过度刺激综合征者,不宜用HCG。

什么是返祖现象

返租的特征

返祖现象是一种不太常见的生物“退化”现象。例如一生下来身上就长满毛发的毛孩,就是一种人类毛发组织器官的返祖“退化”现象,还有天生耳朵会转动的人,可归类为神经系统的返祖“退化”现象,以及天生长有尾巴的人,可归为退化器官的返祖“退化”现象,由此可见,返祖现象显现的部位具有不确定性。以此类推,人类的其它器官功能也不能排除会出现返祖“退化”现象。

返祖的实例

1997年9月30日,辽宁省南部一个农村,降生了一个遍体长毛的孩子。这个毛孩的父母都没有多毛的特征,因此他可能是基因突变后,产生多毛特征这种返租现象。

科普乐园

我们生活的许多环境因素都能引起基因结构变化,例如过高过低的温度、X射线、R射线、病毒、杀虫剂和食物添加剂。还有霉菌毒素,它们会使正常基因变成异常基因,然后通过卵和精子传给下一代,从而表现异常性状。

同类推荐
  • 一本书掌握世界地理

    一本书掌握世界地理

    这是一本浓缩世界地理知识精粹的储备手册。此书不但开阔视野,又可以丰富人的生活情趣。所以说,它既是一本知识储备辞典,又是生活之余的实用佳品。作者根据丰富的地理知识和史料,编撰成这本集知识性、趣味性、科学性为一体的地理书籍。其内容涵盖历法日历、名山秀岳、高原盆地、平原丘陵、岛屿半岛、河流湖泊、瀑布泉地、沙漠森林、草原湿地、峡谷洞穴、地址公园、自然保护区、特色地貌、考古发现、中华奇景、历史文化名城、各省、自治区、直辖市简介等方方面面。让你轻松阅读浩博地理,从而丰富知识,开拓视野。
  • 生物知识

    生物知识

    为满足广大青少年的求知欲,作者在围绕中学生物教材有关知识点的基础上,以动物学和理科综合探索创新教育为核心,参考近年来国内外的有关文献、资料和报道,紧密联系当前生活、生产、科研和教改实际精心编著了此书。本书在内容上侧重于贯彻动物学的基本理论和应用,引导读者学习科学思想方法,使读者能够触类旁通,开拓思路,发展智力和能力。
  • 人类宝藏之谜

    人类宝藏之谜

    本套书主要介绍古今中外关于人类诸多未解的社会、自然现象,包括《中国自然遗产之谜》、《星球宇宙之谜》、《巨兽异兽之谜》等20个分册。
  • 高新科技的开发

    高新科技的开发

    海洋中有多少生物,海洋生物的环境又是怎样的,海水的又有着怎样的学问,以及海洋对人类的影响,无一不激发我们的好奇,让我们走向探索的道路。早在史前人类就已经在海洋上旅行,从海洋中捕鱼,以海洋为生,对海洋进行探索。然对深海海底的探索一直到20世纪中才真正开始。而今,我们通过高科技来探索海洋,进一步揭开海洋神秘的面纱,还你一个更加真实的海洋。
  • 能源:不仅仅是危机

    能源:不仅仅是危机

    本书从独特的视角切入,以通俗易懂的语言阐述了核能、太阳能、风能等各种新能源的基本知识,演绎了能源的发展史,用生动的表达方式描绘了能源的知识。书中主要介绍了国内外新能源与可再生资源的发展状况,并对新能源与可再生资源的资源状况、利用原理与技术做了介绍。
热门推荐
  • 这浮生

    这浮生

    浮生若梦,若梦非梦。浮生如何?如梦之梦。乔女王“赢长卿我要吃回锅肉!”赢长卿“昨天不是刚吃过?”乔女王“嘤嘤嘤,说好的宠我疼我爱我呢!连个回锅肉都不给我做!”赢长卿“.....”→_→乔女王你的女王范又一铲子喂鸡了....-------------------------乔女王“赢小妞!你从还是不从!”赢长卿“你..你..你欺人太甚!”乔女王脚踩茶几双手掐腰“我就欺负你了怎么着吧!”赢长卿“大不了,大不了,我不反抗就是了”赢长卿你节操呢!快.快捡起来!不然一会被人踩稀碎!
  • 恶魔四少的天使甜心

    恶魔四少的天使甜心

    讲述了一段在青春校园恶男与霸女之间的恋爱故事天翼学校又发生了生了离奇恋爱故事呢?一起来看吧!
  • 浮梦双生

    浮梦双生

    她叫草颐,她有两个身份,男主轩绮月有数不清的身份,好朋友佟夙儿也有两个身份,身份的错乱,将展开一个怎样的复杂的故事情节?一开始就痴迷于男二龙寒,帮男主找女朋友,史上最痴情,最憋屈的男主。还有两个国家的斗争,还有妖女作乱,武林第一的位置谁来捍卫?你要看的穿越、双生姐妹、武侠、宫斗、玄幻、权谋……都在《浮梦双生》
  • 戏语水袖

    戏语水袖

    六界,总会有一些居心叵测的人。夜,一道黑影闪过。第二天传来五位举足轻重的少爷小姐死了。21世纪,事过万年,容貌依旧无改。却发现自己只是一缕魂魄。这到底是谁的阴谋。身份之谜,是否能够解开。
  • 叶之秋

    叶之秋

    何时最简单?一叶知秋。叶先生"一片叶子的深情你可懂?"陶小姐"是懂非懂,懂又不懂。"叶先生一个人在心里默念,叶子的深情在于它对秋的等待,只有秋来了,它才愿意凋零。那秋风萧瑟,落叶凋零,凄美又遗憾。
  • 黎平夜话

    黎平夜话

    眺望世界清澈的眼睛,情境各自的不同,方方正正的汉字依托那饱满的情感绝妙的排列。
  • 别触碰,那是爱情

    别触碰,那是爱情

    给你不一样的小说构思,颠覆你对小说的认识,敢不敢与冷雪暮一起来一场关于“爱情”的冒险呢?
  • 珠玑满斗

    珠玑满斗

    生逢乱世,最重要的事情是什么?逐鹿天下一统中原凭本事混的风生水起?可惜乐回是只小虾米,还摊上个神秘又及不靠谱的娘亲,到死都没给她留句准话。先是莫名其妙深陷泥潭,还没等她拔出泥里的脚,奔来杀她的人就跟韭菜似的一茬接一茬。
  • 仙与冼寻

    仙与冼寻

    屠神龙,斗苍天。夺得帝位已成尊,豪情万丈天地间,少年血,犹未染,杀身成圣为佳人
  • 凤冠

    凤冠

    弃坑、搬文.