登陆注册
8915000000028

第28章 理科类(3)

3.思一思(2) :请你挑一种自己最喜欢的展开图,并指出展开图中哪两个正方形是正方体的相对的面。

对于简单的可以直接指出的,可由学生举手上台指出,对于复杂的,如“231型”“33型”“222型”,教师布置学生可以把手中的正方体剪成六张正方形,小组合作摆放,拼回成正方体,做上标记后再举手发言。

4.练一练:下面的图形是正方体的展开图吗?

5.考一考。

(1)一个正方体的展开图,每个面中标着一个字,若折成正方体后,“前”在上面,“你”在右面,“程”在前面,你能判断另外三个面“祝”“似”“锦”在正方体中的位置吗?

(2)一个正方体纸盒的展开图,请在图中的6个正方形中分别填入5、8、13、-5、-8、-13,使展开图沿虚线折叠成正方体后相对面上的两个数互为相反数。

(四)活动4:你知道其他棱柱的展开图吗?三棱柱、长方体、五棱柱……,球能展开成平面图形吗?

此活动作为学生思维拓展部分,教师可以稍作引领,配下列练习,有兴趣的同学可以课外去探索几何图形中更多的奥妙。

你知道吗:下列平面图形分别是哪些立体图形的展开图?

(五)理一理

1.通过本节的学习活动,你了解了立体图形与平面图形的关系吗?

2.你了解研究立体图形的方法吗?

引导学生理出本节课活动的重点,四个活动分别了解“圆柱圆锥”“棱锥”“棱柱”的展开图,着重以正方体为例探索了所有的展开图,并进行了更深层次的剖析。

3.通过这节课学习,你制作正方体时还会剪六张正方形吗?你会如何制作?

(六)形成性练习

1.对应作业本。

2.在节日里(如母亲节、教师节、国庆节、元旦等),你能设计并制作一个精美的盒子赠送给你的亲人、老师、同学或朋友吗?

(浙江省玉环县清港中学 仇文筱)

点评

如何培养学生的空间观念,使学生认识二维的平面图形与三维的立体图形的关联,一直是初中数学教学的难点。“立体图形的展开图”这一教学设计巧妙地把常见立体图形展开图串连成四个设计精妙的数学活动,通过让学生想一想,说一说,猜一猜,折一折,想一想,做一做,思一思,练一练,考一考等,让学生观察和动手操作,经历和体验图形的变化过程,从而有效地发展了学生的空间观念。整个教学设计注重从学生周围熟悉的物体入手,图形构思精巧,不但有利于学生数学思维的拓展,而且培养了学生的数学审美情趣。作者注意到了借助信息技术,进一步让学生体验图形直观。但真正落到实处的不多。

二十五、等差数列

教学设计思路

根据高中数学课堂教学设计的基本原理,在前期分析的基础上结合《普通高中数学课程标准》(实验),制定了“等差数列”第1课时的教学设计方案。数列在整个中学数学内容中处于一个知识汇合点的地位,且有着广泛的实际应用。《等差数列》这节内容是培养学生观察问题,启发学生思考问题的好素材。教材重视从鞋号、座位数、运动员训练量等具体实例引入等差数列,注意将其应用到实际中去,引导学生在解决实际问题过程中提高分析问题和解决问题的能力。同时教材也强调了等差数列与一次函数的联系。因此确定本节课的教学重点是等差数列的概念和等差数列的通项公式,关键是讲清等差数列“等差”的特点及通项公式的含义。

基于上述理解,故设计了以“问题”为主线的“创设情景-提出问题-解决问题-再提出问题”的教学模式。

一、前期分析

“等差数列”是人民教育出版社2006年出版的《数学第一册上(必修)》(全日制普通高级中学教科书)第三章数列中3.2节的内容,主要包括:等差数列的概念和等差数列的通项公式。

数列在整个中学数学教学内容中处于知识的汇合点的地位,尤其是等差数列与等比数列,有着广泛的实际应用。数列还起着承上启下的作用,一方面,初中数学的许多内容在解决数列的某些问题中得到了充分的应用,数列与前面学习的函数等知识有密切的联系;另一方面,学习数列又为进一步学习数列的极限等内容做好了准备。

学习者是高中一年级第一学期的学生。通过初中的学习和平时生活经验的积累,对“等差数列”的内容已有一定的生活经验和认知基础,但是对于把生活问题数学化,用抽象的数学符号语言来准确地描述,还有一定的难度。

教学重点:

等差数列概念的理解及等差数列的通项公式。

教学难点:

等差数列“等差”的特点及通项公式含义的理解。

二、教学目标

【知识与技能】

1.会用定义判断已知数列是否为等差数列。

2.会写出已知等差数列的通项公式。

3.能用函数观点分析等差数列和一次函数的关系,能用一次函数的知识来认识等差数列的性质。

【过程与方法】

1.经历等差数列概念的形成过程,体会从特殊到一般的教学思想方法。

2.通过等差数列通项公式的探究活动,体验数学发现与创造的历程。

【情感、态度与价值观】

1.体验探索发现知识带来的快乐。

2.感受数学思想和数学文化的深刻内涵。

3.形成自主学习的兴趣和热情。

4.养成勇于探究的科学精神。

三、教学准备

与课堂教学相关的多媒体课件。

四、教学过程设计

(一)创设情境,引入概念

某饮料公司拟推出一项有利于环境保护的回收饮料瓶的措施,规定每3个饮料罐可换1罐饮料……

创设废品回收的问题情景,渗透环保意识,增加人文气息。

在概念教学时,应更多地从概念的产生和发展的过程中为学生提供思维情境,让他们通过观察、比较、概括,由特殊到一般,由具体到抽象。

因为数学知识的学习过程是一种包含猜测、试误、证明与反驳、实验与改进的复杂过程,所以数学课堂教学应该经历从现实背景中抽象出数学知识的全过程。

(二)观察归纳,形成概念

问题二:能用数学文字语言来描述这些数列的共同特征吗?

启发学生积极思考,大胆猜想,归纳出共同特点,引出等差数列的定义。

若从教材的几个数列出发,马上提问“这些数列有什么共同特点”,尤其是让学生从“每一项减前一项的差都相等”这一特征去发现问题,造成学生的思维定式,没有一个让学生自主观察、发现、探索的空间,不利于数学概念的形成。

让学生用数学文字语言和符号语言来描述,并展示学生学习理解的过程,实现概念的数学化。

要求学生在不看课本的前提下总结等差数列的定义,学生可能会下“后一项与前一项的差等于常数”、“每一项与它前一项的差等于同一个常数”的等差数列的定义,尽管总结的语言很可能不严密、不流畅,教师也不要着急地去照本宣科,否定学生的回答,相信学生在经历了一番挫折后会逐步完善他们的语言表述,这样一方面使形成的知识记忆牢固,另一方面能真正将培养能力落到实处。

能用数学符号语言来描述这些数列的共同特征吗?

无论是数学文字语言还是数学符号语言的描述都是十分严谨的,容不得丝毫偏差。

严谨求实是数学最基本的科学态度。它也是数学人文价值的重要体现之一。

实际生活中这样的数列例子很多,让学生举例。

例如:全国统一鞋号中成年女鞋的各种尺码;衬衫尺寸;堆垛等。

数学源于生活。加深对数列的感性认识。

满足这样特征的数列很多,所以我们有必要为这样的数列取一个名字。教师可将为数列取名的任务交给学生,让学生切身体会数学家思想轨迹。

定义:

1.(文字语言)一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

2.(数学符号语言)

对定义进行分析,强调:

ⅰ.从第2项起;

ⅱ.相邻两项的差,且后一项减去前一项;(防止把被减数与减数弄颠倒,而且公差可以是正数、负数,也可以是零。)

ⅲ.差为同一个常数;

ⅳ.n∈N 且n≥ 2,对所有的n 都成立,无一例外。

数学史介绍:等差数列是数学史上最早出现的并引起人们广泛应用的数列。在1858 年苏格兰收藏家收藏的、出自埃及的、约公元前1650年的阿莫斯纸草上就记载着两例等差数列(10人分10斗玉米,从第二人开始,各人所得依次比前一人少18);在我国出土的春秋至战国时代楚国的铜环圈,其重量大致都按等差数列配置;成书于公元前二世纪的《周髀算经》上有“七衡图”……这些都记载着对等差数列的研究,被誉为“数字推理的第一思维”。

数学史是人类文化的重要组成部分,贯穿数学文化的发展历程。教学时要有意识地融入数学史的教学,利用它激发学生的学习兴趣,培养学生的数学精神,促进学生对数学的理解和对数学价值的认识,构筑数学与人文之间的桥梁。

抽象出的4个数列都是等差数列,分别说出它们的公差。

引导学生发现公差d对数列的影响,当d>0时,数列是递增的;当d<0时,数列是递减的;当d=0时,数列是常数列。

(三)变式训练,巩固概念

问题三:将数列①的项的次序颠倒,得到下列数列9,7,5,3,1,是否与原数列一样?是否是等差数列?若是,公差是多少?

练习:判断下列数列是否为等差数列?若是,公差是多少?若不是,说明理由。

通过变式训练,巩固概念。注意对数列概念严谨性的分析,尤其是和④,应分析公差d是一个不随项数n的改变而改变的常数。

变式要有一定的难度,但要体现由易到难,层层递进,让问题始终处于学生思维水平的最近发展区。设计变式一定要内涵丰富,境界开阔,给学生留下充足的思维空间。

(四)讨论研究,深化概念

1.通项探究

回到引入的问题一,其中的①②③易解决,但④ 比较麻烦。引导学生得出:若能求出通项公式,问题就容易解决了,并把问题推广到一般情况。

问题四:已知等差数列{an} 的首项是a1,公差是d,a2,a3,a4是多少?an 又是多少(用首项a1及公差d表示)?

在学生讨论探索的基础上,点评小结:

方法1的通项公式是由a2,a3,a4……归纳得到的,归纳得出的公式对a1是否成立需要补充说明。

这种由前几项归纳得出一般的通项公式的方法(由特殊到一般),我们称为不完全归纳法,其结果不一定可靠,还需证明的,这里证明省略。

归纳法,也是我们今后已知数列的递推式求通项公式的常用方法。

方法2叫累差叠加法。

引导学生思考:在等差数列{an} 中,确定其中任意的两项,这个等差数列的通项确定吗?

弗赖登塔尔认为数学教学方法的核心是学生的“再创造”。教师不必将各种规则、定律灌输给学生,而是应该创造合适的条件,提供很多具体的例子,让学生在实践活动的过程中,自己“再创造”出各种运算方法,或是发现有关的各种规律。

说明:等差数列的通项公式:an=a1+(n-1)d(n∈N)

①已知一个等差数列的首项和公差,可以确定这个数列中的任何一项。

②等差数列的通项公式反映的是第n 项与首项、公差的关系。

③公式中一共有a1,an,n,d四个量,其中a1与d是基本量,只要知道其中的任意三个量的值,就可以利用方程思想求出第四个量的值,即知三求一。

④ 公式记忆:等差数列的第n项是其首项与公差的(n-1) 倍之和。

数学教师要不要培养学生的记忆能力?这是有争议的。我认为,数学教师有可能、也有必要培养学生的记忆能力。

写出①②③④四个数列的通项公式。

2.简单应用

即这个等差数列的首项是-2,公差是3;通项公式为an=3n-5。

引导学生一题多解,注意让学生分析,并通过学生的不同解释,加深对数列基本法的理解,以及决定等差数列要素的选择。本解法采用待定系数法,通过解方程(组),求出首项和公差。方程思想,是数学中常用的解题思想方法。

方程思想的核心是运用数学的符号化语言,将问题中已知量和未知量(或参变量)之间的数量关系,抽象为方程(或方程组)、不等式等数学模型,然后通过对方程(或方程组)、不等式的变换求出未知量的值,使问题获解。方程思想体现了已知和未知的对立统一。

练习:解决引入问题。

若是消费者购买了77罐饮料,则可以喝到115罐饮料;若是消费者购买了m 罐饮料,则当m 是奇数时,可以喝到3m-12罐饮料;当m 是偶数时,可以喝到3m-22罐饮料。

3.挖掘等差数列的函数特征

在数列的通项公式中,任取一个n,都有唯一一个an 与之对应,联系映射的思想,挖掘数列的函数特征。

问题五:数列的通项公式的实质是定义在正整数集(或它的有限子集)上的函数,那么,等差数列的通项公式是什么函数?

在讲等差数列的概念时,凸现它与一次函数的联系,便于利用所学过的一次函数的知识来认识等差数列的性质。对于任意一个n,都有唯一确定的an与之对应,这与以前学过的什么内容类似,引发学生联想,归纳,学生自然会想到一次函数,并告诉学生这不是新的知识,而是函数旧知识的延伸和拓展。

问题六:数列图象是一群孤立的点,那么,等差数列的图象又有什么特征?

结论:用图象表示时,从图上看,表示这个数列的各点(n,an) 均匀排列在直线y=px+q的图象上,其首项是p+q,公差是p。由两个点唯一确定一条直线的性质,任意两项可以确定一个等差数列的通项。

同类推荐
  • 科学发明家

    科学发明家

    语文新课标指定了中小学生的阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高广大学生的阅读写作能力,培养语文素养,促进终身学习等具有深远的意义。
  • 小公子(语文新课标课外读物)

    小公子(语文新课标课外读物)

    语文新课标指定了中小学生的阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高广大学生的阅读写作能力,培养语文素养,促进终身学习等具有深远的意义。
  • 编辑本论

    编辑本论

    学科成熟的重要标志之一是已经具备了一个基本概念,并由这一概念形成一概念体系。编辑学作为一门独立的学科,有其支撑的理论体系。正如概念体系是一门学科区别于其他学科门类的标志一样,编辑理论独特的概念体系也是编辑理论独立于学科之林的理由之一。“编辑”是编辑理论概念体系的逻辑起点,是构成编辑理论概念体系的基础。虽然,现今关于“编辑”概念有着诸多定义,在具体表述上存在着差异,但见于各家论述中的说法基本都还是倾向于将“编辑”作为编辑理论的最基本概念。由这一基本概念出发,再向纵深方向发展,形成编辑概念系统。
  • 名人传(语文新课标课外必读第十二辑)

    名人传(语文新课标课外必读第十二辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 花季雨季正当时(指导学生身心健康发展故事集)

    花季雨季正当时(指导学生身心健康发展故事集)

    学生时代,是一个充满理想的季节,也是人体发育的转折关键期,这一时期,如何正确认识和对待自己的生理变化,怎样面对生活和生理的各种烦恼,是决定青少年身心是否健康的关键。
热门推荐
  • 春风一暖,我们在一起

    春风一暖,我们在一起

    那一年,她在樱花下撞见了他,一天被砸了三次头,全都是因为他,后来,他竟是她的同桌,再后来,他因为无法在看到别人接近她而对她发脾气,而她又不懂,他只能独自郁闷,再在后来,她,不得已到了他的家借住,直到那一天,一个温柔的男生捧着鲜花走向她时,他再也无法忍住了,霸道地向她表白了,她站在他们初见的樱花树下,羞涩的笑了,笑容干净,纯洁,愿所有的女孩都能遇到一个真心对自己好的他。。
  • 大唐凰后:长孙无垢传

    大唐凰后:长孙无垢传

    以大唐的皇后长孙无垢和李世民之间的故事为蓝本
  • 宁生宁生我爱着你的名字爱着你

    宁生宁生我爱着你的名字爱着你

    知道有些人看过了。(处女作)表白之顾司默宁生,宁生,我爱着你的名字,爱着你。宁生,我的世界已被你占据,你怎会舍得离开我。宁生,你知道么,你似我的生命。你知道么?你喜欢叫我阿默。因为你告诉我你妈妈总会叫你阿生,你说这是对最爱的人最亲昵的称呼。所以,宁生,我从没有想过你会脱离我的世界,那么突然。
  • 自由家园

    自由家园

    其出身不高,瘦弱的外表却难掩其宏图之志,少年便追随兄弟征战四方,建立赫赫战功。之后,开府建衙,训练强军,及至青年,更是以劣势兵力战胜名将尔朱荣。本应名满天下,却遭人诬陷,成为弑君之人,曾经的兄弟在其面前被杀,自己更是流落草原。这样一位真正的战神究竟将何去何从,让我们拭目以待。
  • 蓝色构想

    蓝色构想

    海洋是全球生命支系统的组成部分,也是一种有助于实现可持续发展的宝贵财富。中国是陆地大国,也是海洋大国。中国的经济社会发展将越来越多地依赖海洋。本书以“海洋经济、海洋权益、海洋生态、海洋社会”四个专题来研究我国海洋经济社会发展的若干问题。
  • 寒门娇女

    寒门娇女

    前世她被自己丈夫喂入铁水,死的极其凄惨,重活一世,她带着漫天痛苦和无数怨毒重归故土,皇天为证,宁子衿死不足惜,化为吝鬼,永生永世都不放过你们!妖娆女主化身复仇恶魔,一步步将所有陷害她之人一一斩尽杀绝!
  • 重生之君临三国

    重生之君临三国

    大学生重生三国,成为了另一个项氏一族之主。我本废材却凭借一部《项氏秘籍》,一把七尺寒枪,一颗忠义之心,率手中家将,争霸天下。夺城池,天下都城尽入我手。收文武,各级文武官员均效命账前加官拜将封侯。绝色美人,本该天上有,此刻却醉入君怀。言止作品《重生之君临天下》,敬请收看。
  • 暗月行者

    暗月行者

    这是一部风格迥异的小说,这是一个你不了解的离奇世界,这里没有白天,一群从黑暗中爬起的螳螂行者,在无尽磨难中永不言弃,追逐属于自己的信仰,演绎了一幕幕动人的故事。
  • 猫咪萌萌哒

    猫咪萌萌哒

    吴亦凡,大名鼎鼎的EK总裁,对人冷漠如冰,却又呆萌至极。自从他捡回了一个名叫鹿晗的小猫,故事就从这里发生变化……
  • 鬼眼奇谈

    鬼眼奇谈

    为何我一生下来就与别人不一样,与师傅走南闯北,才知道原来妖魔鬼怪不可怕,人心才是最恐怖的。为了家人而不能和他们团聚,心爱的女人不能相拥。这就是我的命运吗?不,我不信命,不认命,天地之大,我定能闯出一片幸福空间。