登陆注册
8489200000010

第10章 太阳之谜(4)

其次,地球上南北极及其附近上空的空气分子和原子也会被太阳风的带电粒子流所激发。这些微粒受激后,可以发出极光,并且形态各异。巨大的冲击还会使磁场强烈地扭曲,产生电子湍流(被称为“杀手”)。这种电子湍流不仅能钻入卫星内部从而造成永久性破坏,还能切断变电器及电力传送设施,从而使地面电力系统全面崩溃。而且,太阳风的带电粒子流还会干扰地球上空的电离层,引起磁爆现象,对无线电短波通讯、电视、航空和航海等事业十分不利。

同时,太阳风还会引发磁层亚暴,从而在距离地球表面3.6万千米的高空处产生强烈的真空放电和高压电弧,这对于同步轨道上的卫星不啻为一场灾难,甚至还会因此而殒灭。1998年5月发生的一次太阳风,就令美国发射的一颗通讯卫星失灵,最后殒灭。1998年5月发生的一次太阳风,也使美国发射的一颗通讯卫星失灵,导致美国4000万个寻呼用户无法收到信息。

此外,太阳风还会对大气臭氧层的变化产生影响,并向下逐层传递,直到地球表面,使地球气候发生异常变化,甚至还会进一步影响地壳,从而造成火山爆发和地震。在1959年7月15日,人们就观测到太阳突然喷发出一股巨大的火焰,这实际就是太阳风的风源。7月21日,当这股猛烈的太阳风吹袭到地球近空时,地球的自转速度突然减慢了(约0.85毫秒),而这一天全球也发生多起地震。与此同时,地磁场也发生了激烈扰动,被称为“磁暴”,环球通信突然中断,一些飞机、船只,由于是靠指南针和无线电导航的,一下子变成了“瞎子”和“聋子”。

小知识——什么是光年

光年,指的是光在真空中行走一年的距离,是由时间和速度计算出来的。光年不是时间单位,而是长度单位。一光年约为9.46万亿千米。更正式的定义为:在一年的时间中(即365.25天,每天相等于86400秒),在自由空间及距离任何引力场或磁场无限远的地方,一光子所行走的距离。因为真空中的光速是每秒299,792,458米(准确),所以一光年就等于9,454,254,955,488,000米(按每分钟60秒一天24小时一年365天计算)。

奇妙的太阳震荡

太阳就像一颗巨大的跳动着的心脏,一张一缩地在脉动,大约每隔5分钟起伏振荡一次。太阳的上下振荡,和以前发现的太阳黑子、日珥等各种太阳运动现象都不同,它不仅具有周期性,而且整个日面无处不在振荡。

归功“多普勒效应”

太阳表面丰富多采的活动现象已经令我们眼花缭乱,然而20世纪60年代初,天文学中的一项重大发现更令我们惊讶不已。1960年,美国天文学家莱顿将最新研制成的强力分光仪对准太阳表面上一个个小区域,准备测定它沸腾表面运动的情况。结果他意外地发现了一件令人十分惊异的现象:太阳就像一颗巨大的跳动着的心脏,一张一缩地在脉动,大约每隔5分钟起伏振荡一次。这次莱顿发现的太阳上下振荡,和以前发现的太阳黑子、日珥等各种太阳运动现象都不同,它不仅具有周期性,而且整个日面无处不在振荡。

太阳距离我们十分遥远,即使通过口径最大的光学望远镜,我们也根本无法看到它表面的上下起伏。那么,莱顿又是怎样发现太阳表面的这种振荡呢?说起来这还要归功于著名的“多普勒效应”。

大家都知道,当一个声音在接近或远离我们的时候,就会发生“多普勒效应”。当它接近我们时,我们接收到的频率升高了,当它离开我们时,我们接收到的频率降低了。与声波一样,光也是一种波,自然也有“多普勒效应”。当光波朝向或远离观测者时,光的频率也要发生变化。在由红橙黄绿青蓝紫七色光组成的太阳连续光谱上,紫色光的频率最高,红色光的频率最低。这个彩色的连续光谱上面还有许多稀疏不匀、深浅不一的暗线,是太阳外层中的一些元素吸收了下面更热的气体所发出的辐射而形成的,叫做吸收线。

在观察太阳光谱的时候,如果我们一直紧紧盯住连续光谱上的一条吸收线,那么当太阳表面的气体向上运动时,也就是朝我们“奔驰”而来的时候,吸收线就会往光谱的高端即紫端移动,简称紫移;反之,当气体向下移动时,吸收线就会往光谱的低端即红端移动,简称红移。如果吸收线一会儿紫移,一会儿红移,不断地交替交换,那么太阳的表面气体就在上下振荡。

太阳振荡的观察证实

说来简单,实际观察起来困难重重。因为太阳离我们很远,而且它振荡的幅度和速度都不大,所以光谱线的位移量也很小,大约只有波长的百万分之几。可想而知,这样微乎其微的变化,发现它是多么不容易。莱顿使用非常精密的强力分光仪拍下一张张太阳光谱照片,然后利用“多普勒效应”的原理,通过计算机进行反复的分析,最后才发现了太阳表面周期振荡的重要现象。

太阳5分钟振荡周期从根本上改变了人们对太阳运动状态的认识,世界各国的天文学家对这个问题都十分重视,许多天文学家纷纷采用各种不同方法对太阳进行观测。他们不仅证实了太阳表面5分钟的振荡周期,而且接连地又发现了其他好几种周期的振荡。有人得到周期为52分钟的太阳振荡,有人得到周期为7~8分钟的太阳振荡。最引人注意的是前苏联天文学家谢维内尔和法国天文学家布鲁克斯等得到的周期为160分钟的长周期振荡。

谢维内尔观测小组在克里米亚天体物理台首先观测到这种长周期振荡。1974年,他们把由光电调节器和光电光谱仪组成的太阳磁象仪安装在太阳塔的后面,利用它来观测连接太阳极区的窄条的光线以避开太阳赤道部分的视运动。来自太阳中心的光线发生偏振,而来自太阳边缘的光线没有偏振,这两部分光线分别照在两个光电倍增管上,这两个光电倍增管的输出就表示中心光线是否相对于边缘发生了多普勒位移。谢维内尔小组利用这种方法在1974年秋季观测到太阳160分钟的振荡周期。

1974年秋天,布鲁克斯在日中峰天文台,利用共振散射方法测定太阳吸收线的多普勒位移的绝对值,进行了十多天的观测,也观测到了太阳160分钟的振荡周期。

太阳160分钟振荡周期被观测到以后,许多天文学家对它表示怀疑。有人认为这种振荡可能是一种仪器效应,也可能是地球大气周期性变化的反映。后来,美国斯坦福大学的一个天文小组用磁象仪观测到了太阳的160分钟振荡周期。一个法国天文小组在南极进行了128个小时的连续观测,同样观测到了160分钟太阳振荡周期。南极夏季每天24小时都能看到太阳,不存在大气的周日活动问题。另外还有两个相距几千公里的天文台同时进行观测,也都观测到太阳的这种长周期振荡。这两个台相距遥远,在长时间观测中大气的影响可以相互抵消了。太阳长周期振荡的现象终于得到了证实,疑问才被打消。

太阳表面到处振荡不停,不仅有升有落,而且有快有慢,这是一幅十分蔚为壮观的景象。

振荡产生的原因

太阳振荡是怎样产生的?这是科学家们最关心的事情。目前,科学家们已经认识到,太阳振荡虽然发生在太阳表面,但其根源一定是在太阳内部。使太阳内部产生振荡的因素可能有三个,即气体压力、重力和磁力。由它们造成的波动分别称为“声波”、“重力波”和“磁流体力学波”,这三种波动还可以两两结合,甚至还可以三者合并在一起。就是这些错综复杂的波动,导致了太阳表面气势宏伟的振荡现象。

人们认为,太阳5分钟振荡周期可能是太阳对流层产生的一种声波,而160分钟的振荡周期则可能是由日心引起的重力波。但是,这些解释究竟正确与否,目前还不能完全肯定。

声波是一种比较简单的压力波,它可以通过任何介质传播。太阳的声波是与地球内部的地震波有些相似的连续波,它们传播的速度和方向依赖于太阳内部的温度、化学成分、密度和运动。像地球物理学家通过研究地震波去查明地球内部的构造模式类似,天文学家正利用他们所观测到的太阳的振荡现象,去窥探太阳内部的奥秘。

新知博览——太阳中微子

中微子是一种非常奇特的粒子,它不带电,质量很小,大约只有电子质量的几百分之一。早在20世纪30年代初期,科学家就根据理论推测出,在原子核聚变反应的过程中,不仅会释放出大量的能量,而且还一定会释放出大量的中微子。到了50年代中期,科学家通过实验证实了中微子的存在。

中微子的发现引起了天文学家的注意,于是他们开始了对太阳中微子的观测和研究。

太阳的能量,来自4个氢原子核合成一个氦原子核的聚变反应。在太阳内部,时时刻刻都在进行着大规模的核反应,因此,中微子也时时刻刻从太阳内部大量地产生出来。中微子有一种奇特的性质,就是它的穿透能力极强,任何物质都难以阻挡。中微子从我们身上贯穿而过,我们毫无感觉。中微子不论碰上地球还是月球,都可以轻易地一穿而过。大量的中微子从太阳内部产生以后,就浩浩荡荡、畅行无阻地射向四面八方。地球表面每平方厘米的面积上,每秒钟就要遭受到几百亿个太阳中微子的轰击。

长期以来,人们只能根据观测太阳表层来推测太阳内部的状况。中微子却是直接从太阳内部跑出来的,它们一定会给人们带来有关太阳内部状况的宝贵信息。因此,天文学家对太阳中微子的观测和研究非常重视。最早开始探测太阳中微子的,是美国布鲁黑文实验室的物理学家戴维斯和他的同事们。他们在南达科他州地下深1000多米的一个旧金矿里,安放了一个特制的大钢罐子,里面装着38万公升四氯乙烯溶液,用它作为俘获中微子的“陷阱”。当中微子穿过这个大罐子时,就会和罐中的四氯乙烯溶液发生反应,生成氩原子,并放出电子。用计数器测出产生了多少氩原子,就可以知道有多少中微子参加反应了。

戴维斯等人经过多年的努力,到了1968年,终于探测到太阳中微子。然而,出乎人们意料的是,他们所探测到的中微子数目比原先预期的要少得多,仿佛有大量的太阳中微子失踪了。这是为什么呢?难道太阳根本没有产生这么多的中微子吗?这个问题引起了科学家的极大重视,成为著名的中微子失踪之谜。

关于太阳中微子失踪的原因,目前科学家认为有好几种可能。第一种可能是目前人们对太阳内部状态的认识有差错,很多天文学家对标准太阳模型提出了很多修改方案,但是始终还没有哪一种修改意见能圆满解释这个问题。第二种可能是现有的原子核反应理论尚有问题。第三种可能是人们对中微子本身的认识并不全面。还有一种可能是太阳内部产生的中微子有很大一部分迅速地改变了本来的面目的,所以人们没能探测到它们。

什么是太阳耀斑

我们知道,太阳的变化平均每隔11年左右就会有一次高峰,即黑子相对数达到极大值,这时如光斑、谱斑、耀斑、日珥等发生在太阳大气中的一些其他活动,也会达到极盛时期。而耀斑则是最强烈的太阳活动,一般认为发生在色球层中,对周围的影响也最大,所以也叫“色球爆发”。

太阳耀斑的发现

1859年,英国科学家卡林顿和霍德逊发现,在一大群太阳黑子附近有一大片明亮闪光(呈新月形),以100千米/秒的速度掠过黑子之后很快消失。后来研究发现,这是一次白光耀斑,属于特大耀斑。因为一般的耀斑只能通过某些谱线(如Ⅱ)才能看到,而那次只要用白光就可观测到,所以称为白光耀斑。

罕见的白光耀斑事件是非常珍贵的,在1859至1991年间,只报道过60次。白光耀斑不仅空间尺度很小(平均只一有十几角秒),而且持续时间很短(几分钟),释放的能量比普通耀斑大,现有的理论仍不能将关于它们的观测事实解释清楚。

利用太阳光单色仪观测一般的耀斑,我们将会看到:有的耀斑像猛烈的火山喷发,有的耀斑则突然冒出巨大扭曲的拱桥状日珥(在太阳边缘),增亮区内的物质沸腾猛烈,气势非常壮观。

太阳耀斑的特点

按耀斑的光面积大小可以将其分为4级,由l级到4级逐渐增强。一个3级耀斑的光面积大约相当于地球表面积的50倍,可以说,地球上没有任何一种自然现象的规模能与其相比。

耀斑的最大特点是:来势凶猛,亮度上升很快,而下降直至消失则比较慢。一般说来,耀斑面积越大的,寿命也越长。小耀斑只有几分至十几分钟的寿命,大耀斑可持续几十分钟至1~2小时。在此期间,相当小的体积内会释放出大量的能量,通常一个特大的耀斑所释放的总能量,相当于100亿颗百万吨级氢弹爆炸释放能量的总和。如果把这些能量分配给地球上的人,那么每个人可得到的能量相当于2颗百万吨氢弹。可见,耀斑的爆发是一场惊天动地的大爆炸,虽然它与太阳输出的总能量相比,仍然是微不足道的。

因为耀斑这种现象是在从色球层到日冕的过渡区中大规模爆发的,并能瞬时加热局部区域等离子体,因此能在几秒钟内把数十亿吨物质加速到400~500千米/秒的速度,并能带动加速高能带电粒子,因而还会产生从X射线、光学乃至射电波段的辐射。特别是其中的紫外线、X射线的辐射,通常比宁静时大几个数量级。

同类推荐
  • 朔方科普夕拾

    朔方科普夕拾

    本书由作者发表和出版的众多文集中精选出的43篇文稿汇编而成,绝大多数都是宣传宁夏地质科学知识的,对宁夏山川宝藏的科学内涵给予了深刻揭示和热情颂扬,将晦涩难懂的地质科学知识以通俗易懂的方式介绍给普通读者。
  • 破译文明古城消失之谜(破译奥秘大世界丛书)

    破译文明古城消失之谜(破译奥秘大世界丛书)

    《破译奥秘大世界丛书:破译文明古城消失之谜》讲述的是为什么文明古城会消失的谜题。
  • 地球探索百科(奥秘世界百科)

    地球探索百科(奥秘世界百科)

    本套书全面而系统地介绍了当今世界各种各样的奥秘现象及其科学探索,集知识性、趣味性、新奇性、疑问性与科学性于一体,深入浅出,生动可读,通俗易懂,目的是使读者在兴味盎然地领略世界奥秘现象的同时,能够加深思考,启迪智慧,开阔视野,增加知识,能够正确了解和认识这个世界,激发求知的欲望和探索的精神,激起热爱科学和追求科学的热情,掌握开启人类和自然的金钥匙,使我们真正成为人类和自然的主人,不断认识世界,不断改造自然,不断推进人类文明向前发展。
  • 中国地理博览2

    中国地理博览2

    《中国地理博览(图文版)(套装全4卷)》全面展示中国自然地理知识,生动再现华夏大地的迷人风姿。浓缩中国地理之精华,行走中国,步入充满魔力的、震撼人心的地理秘境。为读者营造了一个感受中国自然无地理和人文环境的良好氛围。
  • 飞碟追踪百科(科学探索百科)

    飞碟追踪百科(科学探索百科)

    人类社会和自然世界是那么丰富多彩,使我们对于那许许多多的难解之谜,不得不密切关注和发出疑问。人们总是不断地去认识它,勇敢地去探索它。虽然今天科学技术日新月异,达到了很高程度,但对于许多谜团还是难以圆满解答。人们都希望发现天机,破解无限的谜团。古今中外许许多多的科学先驱不断奋斗,一个个谜团不断解开,推进了科学技术的大发展,但又发现了许多新的奇怪事物和难解之谜,又不得不向新的问题发起挑战。科学技术不断发展,人类探索永无止境,解决旧问题,探索新领域,这就是人类一步一步发展的足迹。
热门推荐
  • 千里阴缘之鬼夫太难缠

    千里阴缘之鬼夫太难缠

    夏柳发誓,她从来没做过什么伤天害理的事,可她天生的倒霉体质就是不愿离去!她隔壁家小孩可怜,是因为爹不疼,娘不爱!可她是没爹疼,没娘爱!这倒也罢了,可谁又能告诉她,这夏柳名字是谁给她取的?夏柳下流!不就有些好男色吗?再说她可是典型的有贼心没贼胆之人!明明不是天生阴阳眼,却在十八岁生日之时,在撒尿期间看见美男!说实话,那男的可真叫一个玉树临风,风流倜傥!不过,怎么穿着一身的古装?而且为什么从那天之后,一到夜晚就能看见各种各样的鬼魂在大街上闲逛?悲催的她想着找找男票散散阴气,结果古装美男非要和她阴婚!拜托,我要阳气不要阴气!你在干啥,在动我就要叫啦,非礼啊!【救命篇】某女:“大爷救救我!长得帅的人都会好心有好报的!”某男瞥也不瞥,转身走人。某女抱住大腿:“小女子愿以身相许!”某男斜眼看了一下某女:“要胸没胸,要屁股没屁股,我不是垃圾收集站!”【拜师篇】某女:“帅哥,在下能文能武,上得厅堂下得厨房,洗衣做饭样样都行,实乃徒弟的不二人选!”某男不吭一声,翻个身继续睡觉。某女:“帅哥,在下暖床叠被也很拿手,你可要试上一试?”某男脸色一黑:“你敢偷人?”PS;适合豆腐心读者观看的灵异小说。女主有点二,有点强,有点好男色。一对一身心健康,男强女强,欢迎各位上莫离的贼船。
  • 三届创世

    三届创世

    三届众生,皆在我手!苍茫大地,独握生杀!
  • 侵犯公民人身、民主权利罪与侵犯财产罪

    侵犯公民人身、民主权利罪与侵犯财产罪

    本书是中华人民共和国重要基本法律知识宣讲系列丛书之一,具体内容是对我国刑法分则第四章所规定的侵犯公民人身权利、民主权利罪,第五章所规定的侵犯财产罪,以及与其相关的司法解释等内容进行宣讲和普及。
  • 凡姻素果

    凡姻素果

    (今世)-我们曾错过彼此,今世有缘重相逢,可只怨伤你心重于痕,(牢内)---“墨卿!你是如此恨我啊!呵呵!我喝!”女子的眼睛泛着透莹的泪珠……“药”落肚,那纤细的玉指在滴血的唇边蹭了一下,在湿暗的墙壁上写着:今世痴情,却换你一碗毒药,来世相遇,愿你我不再因情牵绊,如若相恋相遇,我忘此不再负初心,给痴情,只愿不落一瓶鹤顶红,和一身伤…………(来世)“柠儿……你都记起了?”男人不可思议的脸上布满痛苦,“是啊!让我记起一切不就是你想要的吗?”叶千柠冷笑让我记起一切的是你,那么结束这场孽缘的是谁?
  • 我的火辣女神

    我的火辣女神

    周枫意外习得神秘功法《御血宝典》,拥有了操控人体血液的神奇能力!他奉命保护千金小姐,却被大小姐倒追,惹来无数麻烦!二世祖争锋吃醋?一把掌扇飞;神秘组织来刺杀?强大控血能力碾压一切强敌!然而,最让周枫头痛的是,未来岳父也来刁难自己……
  • 冷艳杀手戏冷皇

    冷艳杀手戏冷皇

    她,明明一杀手,却被人无耻篡改记忆,穿越时空,来到这劳什子国家。成为武林各派、皇室王子争夺的对象。当她以为一切结束了,终于可以和心爱的人永远在一起的时候,才发现还有另一场战争在等着她——两个灵魂争夺同一个身体,争夺同一个男人的时候,谁将是最后的胜者?那些曾经对她信誓旦旦的男人们,又将挽留哪一个灵魂?
  • 灵魂之舞:止战之殇

    灵魂之舞:止战之殇

    邪嶙:人与人之间为什么会决斗?雪舞:理由有很多,你长的很丑、我看你不顺眼、我喜欢你女人、我需要钱、我心情不好,甚至是——我就喜欢!邪嶙:国与国之间为什么会打仗?战争的根源何在?雪舞:请赐教。邪嶙:这是一部玄幻中带点科幻,科幻中带点魔幻,魔幻中带点现实,现实中带点言情的史诗级宏伟巨制小说——注定封神,必须封神!聪明的读者看了三万字便爱不释手,更聪明的读者看了第一章就为之疯狂!经典台词:神父,我有罪,我这一生罪孽深重!所有的悲伤由我来抚平,所有的杀戮由我来终止!我们渴望长久和平,我们渴望终结战争,却在为战争做准备!雪舞:你的嘴炮打得真好。邪嶙:承让承让。
  • tfboys的薄荷之夏

    tfboys的薄荷之夏

    本文是三小只的故事,请勿当真。“我问你,在你事业巅峰的时期,你会选择事业还是爱情”“我会选择爱情,因为我的世界没有你是不完美的”【本文三小只独宠她们,甜甜甜】
  • 快穿手册:get男神攻略

    快穿手册:get男神攻略

    【群号204175034】娱乐圈一代天后因车祸而死?某系统表示这是一个阴谋!系统萌妹与无良天后签订契约,跨越无数平行世界,高超演技扮演—娇羞小妹,白莲女配,高冷御姐…腹黑本性get√男神—伪高冷欧巴,霸道总裁,痴情大神…沈苏颜无奈摊手,姐的魅力无限,但系统妹纸一脸奸诈,当某个汉纸欺身而上,沈苏颜悲催明白,系统妹纸笑望天,叫你欺负我!
  • 胡雪岩发迹史

    胡雪岩发迹史

    胡雪岩到底是个什么样的人?他是如何从穷乡僻壤走入富丽堂皇的大都市的?又是怎样一步步地走近和他命运息息相关的钱庄?他生命中的两个大贵人是谁?左宗棠是个什么样的人?他和胡雪岩是怎样互相扶持的?王有龄又是何方神圣?他在胡雪岩的生命中扮演了怎样的角色?神奇的胡雪岩是怎么主导中外大商战的?最后他又为何会一败涂地?到底是谁给了他致命一击……想要知道这些问题的答案吗,那么就请打开《胡雪岩发迹史》,让我们一起回到历史的轮回中,去重新品味那段充满传奇色彩的历史乐章吧!