刘徽是中国古代最优秀的数学家之一,他生活在三国时期的魏国,有关他的生平事迹和生卒年代等情况,现代人们知道的很少。他在反复研读《九章算术》的过程中,发现了很多不尽如人意之处,便决定对该书作一个详细的注解。他获得的许多重要的数学成就都包含在这些注解当中。此外,他还研究过天文、历法,从事过度量衡的考校工作。
当刘徽发现了球体积公式存在着过大的误差后,便决心推算出精确的公式来。他先是用两个半径都等于R的圆柱面,让其轴线互相垂直并相交,于是,这两个圆柱面的公共部分正好把半径为R的球体包含在内,这个公共部分的外形就像一个既圆又方的盒子,刘徽给它起了一个名字,叫做“牟合方盖”。两个对接的烟筒在拐弯处的形状就像牟合方盖的一个角。然后刘徽想,若用一个与底面平行的平面去截它们,那么球的截面肯定是圆,而牟合方盖的截面刚好是一个正方形;无论截面高低如何,其形状只不过是大小有所不同罢了。
假定圆半径是1,则圆面积就等于π,而正方形面积就等于4,即任意正方形与其内切圆的面积之比都是4:π。既然牟合方盖与其内切球体的任意截面积之比都是4:π,那么二者的体积之比也是4:π.
刘徽在这里用到了一个重要的截面原理:如果两个等高的立体,用平行于底面的平面截得的截面积之比为一定值,则这两个立体的体积之比也等于该定值。这个原理现在称为“刘徽原理”。因此,他把计算球体积的问题转化为计算牟合方盖体积的问题了。换句话说,只要求出牟合方盖的体积,就可得到球体积公式了。
又过了200多年,我国南北朝时期的伟大科学家祖冲之的儿子祖暅接着研究这个问题。虽然祖暅仍循着刘徽的思路,设法解决牟合方盖的体积问题,但其方法独特而新颖,从而巧妙地求出球体体积。
祖暅作了一个边长为2R且外切于牟合方盖的正方体,该正方体的体积是8R3,他想,只要算出正方体和牟合方盖的体积之差就可获得牟合方盖的体积,祖暅说:“幂势既同,则积不容异”。意思是说,既然两个立体的截面积处处相同,则其体积不可能相异。
虽然阿基米德最早推出球体积公式,但由于他采用的方法与中国古人的方法有所不同,因此他并没有发现立体的截面原理。
立体的截面原理在国外被称作“卡瓦列里原理”,因为该原理在欧洲最早是由意大利数学家卡瓦列里发现的。卡瓦列里是着名科学家伽里略的学生,他在老师的影响下考察一些复杂图形的面积和体积问题。他认为,面积就像布一样是由一条一条的线织成的,体积就像书一样是由一张一张的纸组成的。他在1635年出版的《连续不可分几何》中给出了立体截面原理,其内容与“刘徽原理”完全一样,但比刘徽要晚1300多年。
立体截面原理揭示了立体体积之间的一个十分重要的关系,用它不仅可以巧妙的导出球的体积公式,而且在一般意义上,它是解决立体体积问题的基础,像高中数学中,有关棱柱、棱锥、棱台、圆柱、圆锥、圆台等几何体的体积公式,都是建立在立体截面原理这一基本规律之上的。而球的体积公式给人们带来的方便,更是不言而喻。只要是符合球体形状,大到星球,小到原子,都可以运用公式很容易地计算出它的体积,这在数学以外的工业、农业、天文等各个行业及科学技术中运用也是屡见不鲜。
137.三角函数符号的来历
正弦是最重要也是最古老的一种三角函数。早期的三角学,是伴随着天文学而产生的。古希腊天文学派希帕霍斯为了天文观测的需要,制作了一个“弦表”,即在圆内不同圆心角所对弦长的表。相当于现在圆心角一半的正弦表的两倍。这就是正弦表的前身,可惜没有保存下来。
希腊的数学转入印度,阿耶波多作了重大的改革。一方面他定半径为3438,含有弧度制的思想。另一方面他计算半弦(相当于现在的正弦线)而不是希腊人的全弦。他称半弦为jiva,是猎人弓弦的意思。后来印度的书籍被译成阿拉伯文,jiva被音译成jiba,但此字在阿拉伯文中没有意义,辗转传抄,又被误写成jaib,意思是胸膛或海湾。12世纪,欧洲人从阿拉伯的文献中寻求知识。1150年左右,意大利翻译家杰拉德将jaib意译为拉丁文sinus,这就是现存sine一词的来源。英文保留了sinus这个词,意义也不曾变。
sinus并没有很快地被采用。同时并存的正弦符号还有Perpendiculum(垂直线),表示正弦的符号并不统一。计算尺的设计者冈特在他手画的图上用sin表示正弦,后来,英国的奥特雷德也使用了sin这一缩写,同时又简写成S。与此同时,法国的埃里冈在《数学教程》中引入了一整套数学符号,包括sin,但仍然没有受到同时代人的注意。直到18世纪中叶,逐渐趋于统一用sin。余弦符号ces,也在18世纪变成现在cos。
138.坐标系的由来
有一天,笛卡尔(1596-1650),法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。
无论这个传说的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。
直角坐标系的创建,在代数和几何上架起了一座桥梁。它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究。
笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何。他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。比如,我们把圆看成是一个动点对定点O作等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的。我们把点看作是留成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩,也就可以把几何和代数挂上钩。
把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法。笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何。在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数。
恩格斯高度评价笛卡尔的工作,他说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学。”
坐标方法在日常生活中用得很多。例如象棋、国际象棋中棋子的定位;电影院、剧院、体育馆的看台、火车车厢的座位及高层建筑的房间编号等都用到坐标的概念。
139.圆锥曲线的产生与发展
希腊着名学者梅内克缪斯(公元前4世纪)企图解决当时的着名难题“倍立方问题”(即用直尺和圆规把立方体体积扩大一倍)。他把直角三角形ABC的直角A的平分线AO作为轴。旋转三角形ABC一周,得到曲面ABECE',如图1。用垂直于AC的平面去截此曲面,可得到曲线EDE',梅内克缪斯称之为“直角圆锥曲线”。他想以此在理论上解决“倍立方问题。”未获成功。而后,便撤开“倍立方问题”,把圆锥曲线做为专有概念进行研究:若以直角三角形ABC中的长直角边AC为轴旋转三角形ABC一周,得到曲面CB'EBE',如图2。用垂直于BC的平面去截此曲面,其切口为一曲线,称之为“锐角圆锥曲线”;若以直角三角形ABC中的短直角边AB为轴旋转三角形ABC一周,可得到曲面BC'ECE'。如图3。用垂直于BV的平面去截此曲面,其切口曲线EDE'称为“钝角圆锥曲线”。当时,希腊人对平面曲线还缺乏认识,上述三种曲线须以“圆锥曲面为媒介得到,因此,被称为圆锥曲线的“雏形”。