哥德尔表明,怪异的结论恰恰来自用数学透镜观看数学本身时的聚焦过程。理解这一结论的方法之一就是想象在一颗遥远的行星上(比如说火星),所有用于写传奇作品的符号碰巧是我们平时用的0~9的阿拉伯数字。这样,火星人将会在他们教科书中讨论一个着名的发现,他们会发现地球上的我们与欧几里德有关,而同时我们会说:“他们的作品中有许多素数,”他们写的东西则像这样:“8445329844508787866873070005766619463864545067111。”对我们来说它像一个46位的数字。而对火星人来说,它根本不是数字,而是一句陈述语。的确,对他们来说,他们写的这些素数代表着34个字母,6个单词和几行话,就像我和你应用英文字母一样。
现在让我们来想象着讨论一下所有的数学定理之间存在的普遍属性。如果我们查找火星人的教科书,我们看到的所有定理都只是纯粹的数字而己。因此我们可能创造出一条复杂的定理,以分辨哪些数字可以出现在火星人的教科书中,而那些数字从不在那儿出现。当然,我们不愿意谈论数字,而更愿意谈论那些形似数字的符号链。并且,或许对我们来说,让我们忘记这些符号链对火星人的意义,而仅仅把它们看成是古老的数字,这并不是一件容易的事。
通过这一简单的换位透视法,哥德尔找到了更深奥的力法。哥德尔的方法是去想象着研究什么能够被称为“火星人创造的数字”(那些数字实际上是火星人教科书中的定理),并且他试着提出诸如此类的问题:“8030974是否是火星人的创造?”这个问题的意思是,像“8030974”这样的叙述会不会在一本火星人教科书中出现?
哥德尔仔细思索着这一超现实的数字构成,很快他发现这种“火星人创造”的专用数字并不是完全区别于我们熟知的“素数”或“奇数”等概念。这样一来,地球范围内的数字定理便能够处理诸如“哪些数字是火星人创造,哪些数字不是火星人创造”或者“是否有无限的非火星人创造数字”等问题了。很可能高等数学教科书(在地球上的)已经包括了关于火星人创造的数字的全部出处。
就这样,在数学史上最敏锐的洞见之一里,哥德尔设计出了一句惊人的陈述:“X不是一个火星人创造的数字。”这句话中的X就是:当“X不是一个火星人创造的数字”陈述被译成火星人的数学概念时所表示出的数字。仔细想一下这句话,直到你明白它为止。被翻译成火星人概念的“X不是一个火星人创造的数字”这句陈述,对我们来说将是一串巨大的数字链——一个很大的数字,但是,这串火星人的书写正是我们要找的X(这句叙述本身所谈及的X)。说起来太曲折,的确这真够曲折的!但是曲折正是哥德尔的特长——曲折就在空间结构中,曲折就在原因中,万事万物都是曲折的。
通过把定理想成符号模式,哥德尔发现,用“形式体系”表示的陈述不仅能够阐明它自身,而且能够拒绝它自己的理论来源。数学中存在的这一纠缠不清的潜在结果,对火星人来说是一种巨大的非同寻常的悲哀,为什么悲哀呢?因为火星的人们——像鲁塞尔和怀特洛德——早已全身心地希望,他们的形式体系会抓住数学的所有真实陈述。如果哥德尔的陈述是正确的,那么它在他们的教科书中将不会被当成一条定理,并且它将再也不会出现在他们的教科书中——因为哥德尔的陈述已经表明它本身是不可能的!如果它的确在他们的教科书中出现了,那么它对它本身将是错误的又有何解释呢,并且有谁,即使是火星人,会想要一本提倡错误和提倡正确一样多的数学教科书呢?
所有这一切的结果是,一直被保持的形式主义的目标只不过是一种幻想。所有形式体系表明是不完全的,因为它们本身就能够表明他们自己是无法得以证明的。并且,据说1931年哥德尔提出的“数学的不完全性”也说明了上述观点。事实上,不是数学本身是不完全的,而是任何试图用一套有限的公理和规则去抓住数学的所有事实的形式体系都是不完全的。对于你来说,这一结论可能并不会给你带来震撼,但对于20世纪30年代的数学家们来说,它结束了他们的整个世界观,并且数学自此将面目全非了。
哥德尔1931年写的文章也产生了其他的影响:它发明了循环函数理论,它成为今天计算机理论的重要基础理论之一。确实,在哥德尔的文章的核心部分,写下了为创造出“火星人创造”的数字而制定的复杂的近似计算机程序的内容,并且这一“程序”是用极似Lisp的程序语言的形式写下的,而这一语言在将近30年后才得以开发。
哥德尔这个人和他的理论一样古怪。1939年,他和他作为职业舞蹈者的妻子艾蒂丽逃离纳粹德国并且前往普林斯顿。在那里,他与爱因斯坦共同在高级研究所任职。在晚年,哥德尔成了病菌传染方面的妄想狂患者,他强制性地一次又一次地洗净自己的餐具,带着露有双眼的滑雪面具到处乱跑,一时间他成了臭名昭着的人物。72岁时,他因为拒绝进食而死于一家普林斯顿的医院里。正如形式体系的威力注定要不完全一样,生活也是不完全的,也正如形式体系的复杂性注定要灭亡一样,每一个人都有自己独特的生活方式。
130.无理性与超越性超越数论
如果要问:“谁是现代最伟大的物理学家?”有一定现代化知识的人将脱口而出:“爱因斯坦!”如果再问:“谁是能同爱因斯坦地位相当的最伟大的数学家?”正确的回答应该是:“希尔伯特!”
希尔伯特同爱因斯坦有很多的相似之处。他们都生长在擅长理论思辩的德国文化传统之中,都有良好的哲学修养和艺术气质。都是在几个重要研究领域分别做出划时代的贡献,对同时代的科学家都有巨大的影响,并且至今仍发挥着主导作用。1914年,当德国政府让一批最着名的德国科学家和艺术家发表《告文明世界书》,拥护德皇的战争行动时,没有在上面签名的只有两个人:一个是爱因斯坦,另一个就是希尔伯特。
1862年1月23日下午1点钟,一个孩子出生在东普鲁士首府哥尼斯堡,他是希尔伯特家族的后代,他的名字叫大卫。大卫·希尔伯特的出生地哥尼斯堡距离波罗的海不远。布勒格尔河流经市区,在4英里以外入海。这里是普鲁士王国的发祥地。它的工商业很发达,而且有一所着名的大学,伟大的哲学家康德的一生大部分时间都在这里度过。这里是新教徒的势力范围,人们重视生活,重视理性,强调“发自内心的信仰”。德国人的抽象和思辨能力素来发达,一般的民众都对哲学和自然科学饶有兴趣。据说,当康德的《纯粹理性批判》出版后,甚至成为贵族夫人和小姐梳妆台上显示“学问”的装饰物,这种雅兴在别的国家里是很少见的。
有幸成为哲学家康德的同乡,对于希尔伯特来说是难得的优越条件。哥尼斯堡人都把康德看成本市最伟大的居民。每年4月22日是这位哲学家的诞辰纪念日,靠近哥尼斯堡大教堂的地下圣堂对公众开放。希尔伯特的母亲总要领着年幼的希尔伯特前去瞻仰被月桂花环绕的康德的半身像,一字一句地拼读圣堂墙上的格言:
“有两种东西,我们对它们的思考越是深沉和持久,它们所唤起的那种越来越大的惊奇和敬畏就会充溢我们的心灵,这就是头上的星空和心中的道德律。”
希尔伯特的母亲是个不寻常的女人,用德国人的说法是“一个怪人”。她不仅对哲学和天文学有兴趣,而且被数学弄得着了迷。母亲的影响自然使希尔伯特自幼崇敬康德的哲学。直到晚年,他在哥尼斯堡自然科学家大会上做关于“自然认识与逻辑”的演讲时还说:“我认为在本质上,康德认识论的基本的思想也体现在我对数学原因的研究中。”
很多数学家小时候都显露出很高的数学天赋。帕斯卡、牛顿、莱布尼茨、高斯、阿贝尔、伽罗瓦……都是有着传奇色彩的数学神童。希尔伯特小时候却没有这样突出的表现。在这一点上,他和爱因斯坦倒有点相似之处。据说,爱因斯坦小时候智力表现一般,沉默寡言,应付学校的教学大纲并不出色,很少引起教师们的注意。希尔伯特也是如此,在领悟新概念方面,他并不很快,记忆力也较差。对于要死记硬背的课程,特别是语言课,他缺少兴趣,但是他相当用功。每当要理解一件事情时,他总要通过自己的消化把它彻底搞清楚,否则决不罢休。他对数学发生兴趣的原因之一,在于数学用不着死记硬背,而是可以通过逻辑推导,因而比较容易掌握。希尔伯特的家里人都觉得他有点怪。他的母亲要帮他写作文,可是他能给老师讲解数学问题,家里没有一个人真正了解他。
希尔伯特小时候才华未外露的一个重要原因,是他开始时的学校环境并不太适合他。他的父母为他选择的皇家特别预科学校名声极好,康德本人就是该校的毕业生。但是这个学校课程因循守旧,语言课比重很大,数学课分量很少,而且不讲自然科学。在学校里,几乎没有机会独立思考和发表个人见解。直到预科学校最后一学期开始的时候,希尔伯特才转到威廉预科学校。这里的环境大大改善了,不仅注重数学,甚至讨论几何的新发展。希尔伯特的学习成绩明显进步,几乎所有的课程都获得优等成绩。而数学成绩则得了“超等”。在他的毕业证书后面的品行评语是:他的勤奋“堪称模范”,“对数学有浓厚的兴趣”,“他对数学表现出极强烈的兴趣,而且理解深刻;他能以极好的方法掌握老师讲授的课程,并能正确地、灵活地运用它们。”
18岁的时候,希尔伯特进入哥尼斯堡大学。这是一所具有优良科学传统的大学,着名的数学家雅可比曾在这里执教。他的接班人是里奇劳特,此人既在多周期函数领域做出杰出贡献,又把魏尔斯特拉斯由一个普通中学教师变成职业数学家。被誉为“现代分析之父”的魏尔斯特拉斯,早年尽管在数学研究上成就卓着,但由于没有学位,当了十多年中学教师,里奇斯特发现了他,并说服哥尼斯堡大学授予他名誉博士学位。这一重要转折从根本上改变了魏尔斯特拉斯的命运。哥尼斯堡大学里还有一位多才多艺的理论物理学家纽曼,他创立了德国大学第一个理论物理研究所,并开创了学习班。这种学术活动形式在培养人才方面有着重要的作用。哥尼斯堡大学在数学和理论方面的优良传统,对希尔伯特后来的学术发展有很深刻的影响。
大学的生活对于希尔伯特来说简直是太自由了,教授们想讲什么课就讲什么课,学生们想学什么课就选什么课,这里不规定最少必修课的数目,不点名,平时也不考试,直到为取得学位才考一次。意想不到的自由,使不少大学生把第一年时间都花费在饮酒和斗剑上。魏尔斯特拉斯年轻时就是饮酒和斗剑的好手,并因此一度荒疏学业。德国啤酒的醇香和德国人的豪饮是举世闻名的,象征着青春活力和强健体魄的击剑,也成为大学生们迷恋的传统活动。但这一切都没引起希尔伯特的热情,他全身心地投人数学王国,从中发现了在精神上可以自由发展的新天地。没有随波逐流,这是希尔伯特成长中的关键因素,他走着自己的路,孜孜不倦地追求真理,这种执着精神贯穿了他的一生。
大学毕业后,希尔伯特到莱比锡的大学里任教。他边教书边进行数学研究。果尔丹问题使他奠基了在学术界的地位。
果尔丹是当时的一个知名数学家,比希尔伯特大25岁。果尔丹学术重点在不变量的研究上,果尔丹问题是:是否存在一组基(即一组个数有限的不变量),使得其他所有的不变量(尽管它们的个数有无穷多)都能够用这组基的有理整函数形式表现出来。
希尔伯特又回到哥尼斯堡,这个问题占据了他的整个身心,无论是在工作还是娱乐,甚至跳舞的时候他都在思考着它。1888年9月6日,他从劳兴镇寄出一份短短的注论,寄给哥廷根科学学会的《通讯》。在这篇注论中,他完全出人意料地开辟出一条全新的路径,表明如何用统一的方法对任意个变数的代数形式建立起果尔丹定理。
“假定给定了无穷个包含有限个变量的一组代数形式系,问在什么条件下,存在一组个数有限的代数形式系,使得所有其他的形式可以表成它们的线性组合,系数是原来那些变量的有理整函数!”
他最终得到的答案是:这样的形式总是存在的。
这个轰动世间的关于不变量系有限存在性的证明,其基础是一条引理,或者说一个辅助定理,即关于模的有限基的存在性。“模”是希尔伯特在研究克隆尼克的工作时得到的一个数学概念。这条引理如此简单,看起来极其平凡,而果尔丹一般性定理的证明又可以从它直接导出。这件工作是体现希尔伯特思想之精神实质的第一个例子——他的一个学生把它说成是“一种自然的朴素思想,并非来自权威或过去的经验”。
紧接着的几年间,希尔伯特在学术界的地位上升了,他做了大多数年轻人在这种年纪要做的一切事情:结婚、有了孩子、接受教授的聘书,同时他还决定开拓新的研究领域。