登陆注册
8187300000018

第18章 数学教学的趣味奥秘推荐(1)

数学教学的趣味奥秘设计数学教师的趣味教学设计与创新1.“农妇卖蛋”

“农妇卖蛋”是一个经典问题。

这个问题说的是:一农妇去市场卖鸡蛋,第一次卖去全部鸡蛋的一半又半个;第二次又卖去剩下鸡蛋的一半又半个;第三次卖去前两次卖后所剩下鸡蛋的一半又半个,最后又卖去所剩下鸡蛋的一半又半这时鸡蛋恰好卖完,问农妇原有多少鸡蛋?

许多数学家爱好者对这个问题十分感兴趣,并给出了许多解答方法,但多数方法较为繁琐。瑞士着名的数学家欧拉对这个问题给出了一个别具一格的解法:设第三次卖完后所剩(第四次卖去)的鸡蛋为1+0.5,第三次卖去的鸡蛋为(1+0.5)×2=3,第二次卖完后所剩鸡蛋数应为:(3+0.5)×2=7(个),因此,农妇原有鸡蛋数为:(7+0.5)×2=15(个)

我们从欧拉对上述问题得到启发:有些数学问题,如果按正向思维去考虑问题,有时难以入手或根本无法获解,但若能根据问题提供的条件,进行逆向思维去考虑,则有获解的希望。欧拉解农妇卖蛋问题正是这种逆向思维方式的具体体现。

2.摆满棋盘的麦粒

在印度,有一个古老的传说:“当时舍罕王打算重赏国际象棋的发明人——宰相西萨·班·达依尔。宰相请舍罕王在棋盘的第一个小格内赏给他一粒麦子,在第二个格子内赏给他2粒麦子,第一个格赏给他22=4粒麦子……照此下去,每一格内的麦子都比前一小格的加一倍。舍罕王认为这样摆满棋盘上所有64格的麦粒也不过一小袋,就答应了宰相的要求。可是当宫廷数学家计算了这个数目之后,才发现整个国家仓库里的所有麦子全部给宰相还相差很多,甚至在全世界的土地上也不可能收获这么多的麦子。

这是怎么回事呢?这是一个等比数列(也称几何级数)求前64项和的问题。

根据等比数列求前几项和的公式:

Sn=a1(qn-1)q-1,(其中a1是等比数列{an}的第一项,q是公比,n为项数)而在该题中,a1=1,q=2,n=64,则:

S64=1×(264-1)2-1=264-1=18446744073709551615

这个数字是非常大的。可见,古印度在当时就有了几何级数的思想。

在中国两千多年前的《易经》、《九章算术》等着作中,都包含了等比数列的内容。

3.摸球的奥秘

在一些地方常有人经营这样的“游戏”,经营人手持一个布口袋。口袋里有20个同样大的玻璃球,其中10个蓝球,10个红球,由你任意摸10个,当你摸出的球两种颜色的比为:

10∶0赢300元

9∶1,赢100元

8∶2,赢30元

7∶3,赢2元

6∶4,输10元

5∶5,赢1元

初看,似乎摸球人很占便宜,可以赢5种比值,而经营者只赢1种,摸球的人赢的数额又分别为300元、100元、30元和1元。其实不然,摸球人一般会遇到失败。是否其中有诈?通过仔细观察,发现布袋里的玻璃球并无异样。经营者甚至会让摸球人自己拿着布袋子摸,结果往往又遭失败。

这里的奥秘在哪里呢?

我们知道,在自然和社会现象中,有这样一类事件,它在相同条件下由于偶然因素的影响可能发生,也可能不发生,这类事件叫随机事件。对一个随机事件做大量实验时发现,随机事件发生的次数与试验次数的比总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小。例如:做大量抛硬币的试验中,正面向上和反面向上的次数大致相等,各占总次数的12左右。12就是硬币正面向上(和反面向上)这一事件的概率。

在上述摸球的“游戏”中,摆摊人所列出的几种比所产生的概率是不同的,分别为:

10∶09∶18∶27∶36∶45∶5192378100923782025923781440092378441009237831752923780.001%0.11%2.19%15.59%47.7%34.7%

由上表可以看出,6∶4发生的可能性最大,10∶0出现的可能性最小。他把最小的让给摸球人,价格定得很高,自己挑了个概率最大的,定了中价,5∶5的概率排在第二位。为了避免摸球人总是失败,经营者把这个让给摸球人,但价格定的最低,对摸球人赢的几种情况,概率越小,定价越高。

如果按概率的数值计算,你摸92378次,则可以赢到,300×1+100×100+30×2025+2×14400+1×31752=131602(元),而应输掉44100×10=441000(元),结果摸球人将输掉441000-131602=309398(元)

显然,经营者在不捣鬼的正常情况下,可以赢到30多万元。

摸球“游戏”是一种赌博行为,但利用的是数学知识,可见数学知识无处不在。如果我们掌握了这些知识,就不会上当受骗了。

4.巧解九连环

外国文献中把九连环叫做“Chinese Ring”,世界上一致公认它是人类所曾发明过的最奥妙的玩具之一。

九连环不知道是什么时候发明的,由于年代久远,缺乏史料,许多人都认为它大概来自民间。十六世纪的大数学家、在普及三次方程解法中作出了卓越贡献的卡尔达诺在公元1550年(相当于我国明朝中叶)已经提到了九连环。后来,大数学家华利斯对九连环也作了精辟的分析。在明清二朝,上至所谓“士大夫”,下至贩夫走卒,大家都很喜欢它。

九连环一般都用粗铅丝制成,现在从事此道的民间艺人已经寥若晨星,我们只好自己动手来做一个。它共有九个圆环,每一个环上都连着一个较细的铅线直杆,各杆都在后一环内穿过,插在白铁皮上的一排小孔里。杆的下端都弯一小圈,使它们只能在小孔里上下移动,但脱不出来。另外再用粗铅丝做一个双股的钗。

玩这种游戏的目的是要把九个环一个扣住一个地都套到钗上,或者从钗上把九个环都脱下来。不论是套上或脱下都不容易,要经过几百道手续,还得遵循一定的规律,用数学的行话来说,就是有一套“算法”。

先介绍两种基本动作。如果要把环套到钗上去,先要把环从下向上,通过钗心套在钗头上,这一个动作除了第一环随时可做外,其余的环因为有别的环扣住,都无法套上。但有一点要注意,如果前面有一个邻接的环已经套在钗上,而所有其他前面的环都不在钗上时,那么,只要把这一个在钗上的环暂时移到钗头前面,让出钗头,后一环就可以套上去,再把前一个恢复原位。

至于环从钗上脱下的基本动作,只要把上面的“上环”动作倒过来做就行了。

懂了这两种基本动作之后,我们还要多加练习,要做到不论套上或脱下都能运用自如。现在可以看出,如果只要套上第一环,只须一步手续就行了。要套上第一、二两环,可先上第一环,再上第二环,因此,一共需要二步。如果要上三个环呢。手续就更麻烦了。必须先上好第一和第二两个环,还得脱下第一环,才能套上第三环,最后再上第一环,这样,一共需要五步。(为了统一起见,每移动一个环算作一步。)当环数更多时,手续必然更繁,如果一旦弄错,就会乱了套。幸而我国古代的研究家们早就考虑到了,他们根据古算的特色,创造了三句口诀:“一二一三一二一,钗头双连下第二,独环在钗上后环。”(最后五步是一二一三一;脱环时最先五步是一三一二一。)

换句话说,移动的手续是,每八步可作为一个单元,其中的前七步一定是“一二一三一二一”,至于到底应“上”应“下”呢,这可依自然趋势而定。即:原来不在钗上的应“上”,原来在钗上的应“下”。至于第八步则要看那时钗头的情况而定:如果有两环相连时,一定要脱下后一环;如果钗头只有单独的一环时,一定要套上后一环。以上就是口诀的意思,“算法”的全部奥妙就都在这里了。根据这三句口诀,解开或套上九个环,虽然有341步之多,也不费吹灰之力了。据我国古代小说记载,民间老艺人把九连环全部解开来,大约只要五分钟左右。

1975年,在国外出版了一本专书,专门讲各式各样的数列。由于电子计算机的飞速发展,数学里有一种“离散化”倾向,因此,这本书的出版,被认为是前所未有的,得到了各方面的好评。在这本书里,也收罗着下面的数列:

1、2、5、10、21、42、85、170、341……

起先大家都莫名其妙,不知道它是干什么用的,因为它既非等差数列,又非等比数列,也不是一些有名的数列。但是,后来一经指点就恍然大悟了,原来它就是“九连环”数列。第一项的1,表明解开一个环只要一步,第二项的2,表明解开二个环需要二步……等等以此类推。由此可见,解开九个环,一共需要三百四十一步。

数列里头的各个数,到底有什么规律?是否非得死记不可?经过专家一研究、一分析,谜底终于揭穿了。原来,如果我们用un代表上述数列中的第n项,那么,就可以得出下面的公式:

当n是偶数时,un=2un-1。

(例如,解开八个环需要的步数170,正好是解开七个环需要的步数85的二倍。)

当n是奇数时,un=2un-1+1。

(例如,解开九个环需要的步数341,等于解开八个环需要的步数170的二倍再加上1。)

这样一来,我们有了u1,就能推出u2,有了u2,就能推出u3……正象顺藤摸瓜,这种方法就叫“递归”,是数学里一个非常重要的概念。

上面的方法虽然好,有人却仍旧感到美中不足。他们问,如果要解开几个环,到底需要几步?有没有一个直接的计算公式呢?用数学的行话来说,就是要求出一个用n来表示un的函数关系。经过前人的研究,这个式子也是有的,即:

un=13(2n+1-1)当n为奇数时;

13(2n+1-2)当n为偶数时;

于是,九连环的问题就圆满解决了。

5.奇怪的遗嘱

古时候,人们曾将一些动物奉若神明。例如,古埃及人将猫尊为神圣的月亮和富裕女神,顶礼膜拜。谁家的猫死了,全家人都得剪掉头发,剃光眉毛,以示哀悼;而谁要是杀死了猫,即使是无意的,也会被处以极刑。

无独有偶,印度人也有类似的习俗。不过,他们顶礼膜拜的不是猫,而是牛,即使牛横冲直撞,践踏庄稼,人们也不敢干涉。至于有谁屠宰牛,则无异于犯下了弥天大罪。

由于这种奇特的习俗,印度人民中流传着一个非常有趣的故事。

相传在非常遥远的古代,一位老人害了重病,临终前,他将3个儿子全都叫到床前,立下了一份遗嘱。遗嘱里规定3个儿子能够分掉他的17头牛,但又规定:老大应得到总数的1/2,老二应得到总数1/3,而老三只能得到总数的1/9。

老人去世后,兄弟3人聚在一起商量如何分牛。起先,他们以为这是一件非常容易的事,可是,他们商量来,商量去,商量了老半天,也没有找出一种符合老人规定的分法。因为17的1/2是812,17的1/3是523,17的1/9是189,这3个数都不是整数!

而且,这种分法需要活活杀死2头牛,实际上是根本行不通的。

其实,即使是偷偷屠宰了2头牛也无济于事,因为812+523十189=16118并没有能将17头牛全部分完,还会余下1头牛的17/18。剩下的部分又该怎么办呢?这份遗嘱能够执行吗?

兄弟3人解决不了这个问题,去向许多有学问的人请教,大家聚在一起商量了老半天,也没有找出一种符合老人规定的分法。

一天,有个老农牵着1头牛从这家门口经过,听说了这件事,他想了一会儿,开口说道:“这件事其实很容易。这样吧,我把这头牛借给你们,你们按总数的1/2、1/3、1/9去分,分完后再把这头牛还给我就行了。”

兄弟3人决定按老农的分法去试一试。这时,他们手中共有18头牛,老大分1/2,得9头;老二分1/3,得6头;老三分1/9,得2头,真是巧极了,这么一来,他们刚好分掉了自己家的17头牛,而且还余下1头,正好原封不动地还给那位老农。

这个难住了那么多人的数学问题,就在这变魔术似的一借一还中,干脆利落地给解决了。

这是怎么回事呢?原来,那位聪明的老农弄清了遗嘱的秘密。老人规定3个儿子各得17头牛的1/2、1/3、和1/9,实际上,也就是要他们按这个比例去分配。把1/2∶1/3∶1/9化成整数比是9∶6∶2,而9+6+2又正好等于17,所以,按照9、6、2这3个数字去分配,就正好符合遗嘱规定的分法。

那么,老农为什么又要借给兄弟3人1头牛呢?瞧,12十13十19=1718,这个算式提醒人们,按照遗嘱的规定去分牛,实际上是在分配18份中的17份。老农借出1头牛后,总数达到了18头,而18头的1/2、1/3和1/9正好是整数,他的分法就比较容易为大家所接受。

很清楚,无论借牛与不借牛,结果都是一样。当然,老农借出1头牛后,他就用不着多费口舌去解释其中的道理了。

同类推荐
  • 让青少年热爱科学的故事(青少年素质养成必读故事)

    让青少年热爱科学的故事(青少年素质养成必读故事)

    为了激发广大青少年朋友对科学的热爱,我们组织编写了这本《让青少年热爱科学的故事》。这些小故事中既有讲述古今中外的科学家是如何通过努力学习并最终成才的,也有讲述对人类生活影响巨大的发明是如何诞生的。希望广大青少年朋友读了此书以后,也能够像书中的主人公那样用科学的态度去对待科学,用科学的方法去探索科学……
  • 现代武器

    现代武器

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,社会的进步、科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。
  • 天文科技大追踪

    天文科技大追踪

    宇宙太空将是我们人类的最后一块“大陆”,走向太空,开垦宇宙,是我们未来科学发展的主要方向,也是我们未来涉足远行的主要道路。因此,感知宇宙,了解太空,必定为我们未来的人生沐浴上日月辉映的光芒,也是我们走向太空的第一步。神秘的宇宙向我们敞开了走向太空的大门,我们必须首先知道整个宇宙的主要“景点”。宇宙不仅包括太阳系、星系、星云,还蕴藏着许多奥秘,总之,宇宙是一块神奇的地方,太空充满着我们无限的梦想,发现天机,破解谜团,是这个时代发展的需要,也是我们知识素质的标杆。
  • 海洋中的食物链(海洋与科技探索之旅)

    海洋中的食物链(海洋与科技探索之旅)

    在海洋生物群落中,从植物、细菌或有机物开始,经植食性动物至各级肉食性动物,依次形成被食者与摄食者的营养关系称为食物链,亦称为"营养链"。食物网是食物链的扩大与复杂化,它表示在各种生物的营养层次多变情况下,形成的错综复杂的网络状营养关系。物质和能量经过海洋食物链和食物网的各个环节所进行的转换与流动,是海洋生态系统中物质循环和能量流动的一个基本过程。本书就带领读者去认识海洋中的食物链。
  • 你一定想知道:发明探索知识

    你一定想知道:发明探索知识

    阅读科学知识对提高学习兴趣、优化知识结构会产生积极而有益的作用,没有兴趣的强制性学习只会扼杀活泼的天性.抑制智力的发展。因此,必须在保护学习热情的基础上,扩大青少年学生的知识面,以便充分调动起他们探索求知的勇气和信心。本书的内容涵盖了宇宙、天文、地理、生物、历史、军事、航空航天等诸多领域.采用深入浅出、符合认知规律的科学体例,为渴望探索外部世界的青少年展现出一幕幕极具想象力、神秘感和挑战性的科学场景。促进青少年学生开阔眼界、启迪心智,在思考与探究中走向成功的未来!
热门推荐
  • 萤火小集

    萤火小集

    普通人的平凡经历中,蕴含着许多平凡简单的真道理,有关生存、发展、生活的真道理。这些简单的道理,虽然浅显,但正是这些道理的叠加和延伸,才有了许许多多的真理,比如“春耕秋收”,比如“男大当婚女大当嫁”,比如“先做人,再做事”,等等;同时,也正因为这些道理的浅显,所以极容易被人忽略。这些简单、平凡道理的累积,才是真理形成和发展的真正基石。
  • 凰惊天下

    凰惊天下

    喝水呛死,这大概是最窝囊的死法吧?沈姽心中无限吐槽,幸好没死透还可以重来,魂穿异世,架空王朝?她照样混得风生水起!未嫁先休?休妻?不,是休夫!表里不一左拥右抱的渣男别人当宝她沈姽看不上!貌不惊人?瞎了你们的钛合金狗眼,上古神兽朱雀就是看上她长得美才倒贴来的!灵丹妙药?不好意思神级丹药她当糖豆吃,没了怎么办?大神心甘情愿双手奉上!不过——名扬大陆的神兽朱雀竟然是一个喜欢卖弄风骚的怪大叔?上古凤凰竟然是个傲娇的小屁孩?九尾灵狐竟然是一个少年老成的面瘫女娃娃?更重要的是,一个个见到自家大神就像老鼠见了猫避之唯恐不及?某女心里抓狂:你们身为神兽的节操呢?!
  • 99次穿越:朕以皇朝作嫁妆

    99次穿越:朕以皇朝作嫁妆

    紫月皇朝至高的统治者,意外进入一个可以穿越世界的学院。某学员:班长,这个世界的力量体系......千瑜沫:不用告诉朕有什么,按照标准,干掉最高统治,建立朕的皇朝!周一去仙侠世界买飞剑,周二便到魔幻大陆养精灵。某男主:我不是死了吗,怎么又见到了你?千瑜沫勾起男主下巴,邪魅笑:朕没同意,谁敢带你走!
  • 我不可能是恐龙

    我不可能是恐龙

    陈佳慧,人称“恐龙慧”,一个无论走到哪或者逛到哪,都能被其他人叫做“恐龙”的女生,为了永远摆脱“恐龙”这一个十分可恶的代名词,她决心要做出一些改变------
  • 火澜

    火澜

    当一个现代杀手之王穿越到这个世界。是隐匿,还是崛起。一场血雨腥风的传奇被她改写。一条无上的强者之路被她踏破。修斗气,炼元丹,收兽宠,化神器,大闹皇宫,炸毁学院,打死院长,秒杀狗男女,震惊大陆。无止尽的契约能力,上古神兽,千年魔兽,纷纷前来抱大腿,惊傻世人。她说:在我眼里没有好坏之分,只有强弱之分,只要你能打败我,这世间所有都是你的,打不败我,就从这世间永远消失。她狂,她傲,她的目标只有一个,就是凌驾这世间一切之上。三国皇帝,魔界妖王,冥界之主,仙界至尊。到底谁才是陪着她走到最后的那个?他说:上天入地,我会陪着你,你活着,有我,你死,也一定有我。本文一对一,男强女强,强强联手,不喜勿入。
  • 你比富人少什么

    你比富人少什么

    本书分析了造成穷人艰难处境的部分原因,指出了穷人自身的种种弱点及社会环境对穷人的不利影响,以现实的态度和辛辣的笔锋,探寻穷人的幸福之路。
  • 逍遥小镇

    逍遥小镇

    逍遥小镇长,我的地盘,我做主,要农场生活,有;要牧场生活,每天骑马看牧,也有;我的小镇,我做主。梦想是要有的,万一实现了呢?我的梦想小镇,属于我的小镇生活。咳咳,忘了一条了,要美女,也同样有,很多,还全部是混血美女呢!
  • 极限狂徒

    极限狂徒

    十六岁前,罗烈只是在社会底层苦苦挣扎的普通人,十六岁后,他开始暴走。掌控最强元种,觉醒无上精魄,踏碎一切阻碍,吊打各路英豪,目空一切,嚣张无极限!
  • 蔷薇有毒之公主带刺

    蔷薇有毒之公主带刺

    蔷薇,她是带刺的,且看她如何搅翻这江湖的浑水!
  • 人人一亩三分地儿

    人人一亩三分地儿

    一、主题词:(夏天热,冬天凉老虎本是兽中王扁担长,板凳短三只老猫六个眼一拃远,四指近淹不死蛤蟆漂不起磙种瓜就得瓜,种豆就得豆事儿不光一二三,还有四五六)头顶一片天脚踩一方土人人一亩三分地儿耕耘历辛苦你育百花研我播香五谷诚实大地不欺人天道酬辛苦几度狂风吹几度暴雨戮狂风暴雨任来去劳作这方土汗撒这方土泪洒这方土金色秋风吹过来辛苦也幸福头顶一片天脚踩一方土人人一亩三分地儿梦圆这方土二、创意概述小说是一部有生有死、有笑有泪的当代农村现实题材主旋律长篇小说,抒写村主任李满仓、粮食加工业主春田,外出务工者的土地承包人“地主”春雨、木工“李光脚”、村医“大药包”等乡村守护者在各自的“土地”上辛勤耕耘的现实。