登陆注册
7867700000006

第6章 认识日食的主角——太阳(3)

这一奇景是什么?以前出没出现过?天文学家感到迷惑了。他们翻阅以前的观测记录,查阅编年史书。啊,明白了,这不是新的现象,以前的人在发生日全食时也曾见到过。科学家找到了关于珍珠色亮冠的记载,史学家提到过日食时出现的太阳火舌。它在我们中国的史书里早有记载,在公元前14世纪的殷代就有明确地记录了。

关于这粉红色景物,曾经提出三种解释:(1)大多数科学家认为它来源于太阳,是太阳“外壳”的一部分,平时隐没在阳光里,看不见,只有在日全食时,月亮将强烈的阳光遮住了,才能显露出来。(2)有些科学家不同意这种看法,他们肯定地说:“它们是月亮上的,太阳光把它照亮了,才看到它。”(3)也有人认为,它们不是实实存在的物体,是幻觉,是根本就不存在的虚无缥缈的东西。

粉红色景物到底是什么?照片作出了公正的回答。1860年7月18日在西班牙发生了一次日食,两位天文学家对它进行了观测。一位带着照相机在地中海畔观测,另一位在西班牙内地。两地相距400千米,他们都拍到了很好的照片。底片冲洗出来一看,月亮后面清清楚楚地露出一圈火舌,而且两地的照片上面的火舌是一模一样的。相距400千米的两地拍到同样的照片,说明这个粉红色的景物绝不是虚无缥缈的幻觉。

后来,天文学家进一步证明,它们是太阳色球上的,是从色球向外喷出的“火焰喷泉”,现代天文学上叫做日珥。

日珥是从色球层喷射出来的火红的物质,温度高达500~800℃。喷出物上升的高度一般在几万千米,个别大的可达到150万千米。迅速隆起的日珥物质在高空中停止上升以后,伸展开来,成为宽阔的浮云,形状千姿百态,有的美如拱桥,有的乱似草芥,有的像节日礼花,有的像天上云霞。由于太阳吸引力很大,大多数日珥物质升到一定高度后又往日面降落,但也有一些扬长而去,成为飘浮在日冕中的“流浪者”。

根据形状和运动特征,日珥可分为6种:宁静日珥、活动日珥、爆发日珥、环状日珥、黑子日珥和冕珥。宁静日珥存在的时间很长,寿命甚至达到1年以上,黑子多的时候,它出现得也多。活动日珥是宁静日珥变化而成的,活动程度较大。爆发日珥出现在黑子附近,光很强,活动性很大。大多数爆发日珥像地面火山喷发那样,以迅雷不及掩耳之势冲出日面几万甚至上百万千米。

知识点中子弹

中子弹是一种以高能中子辐射为主要杀伤力的低当量小型氢弹。只杀伤敌方人员,对建筑物和设施破坏很小,也不会带来长期放射性污染,尽管从来未曾在实战中使用过,但军事家仍将之称为战场上的“战神”——一种具有核武器威力而又可用的战术武器。一般氢弹(三相弹)由于加一层贫铀(铀-238)外壳,氢核聚变时产生的中子被这层外壳大量吸收,产生了许多放射性沾染物。而中子弹去掉了外壳,核聚变产生的大量中子就可能毫无阻碍地大量辐射出去,同时,却减少了光辐射、冲击波和放射性污染等因素。

彩虹与阳光

夏天雨后,美丽的彩虹横贯天空,红、橙、黄、绿、青、蓝、紫,恰似彩练当空舞。好看极了!对我国人民来说,彩虹并不是陌生的自然现象,古人早就知道了。在3000年以前的甲骨文中,就有虹的记载。当时,人们认为虹是雨后出现的龙。

彩虹

到了北宋,沈括和孙恩恭曾对虹作过解释。他们认为,虹是太阳光通过悬在空中的水滴而形成的。但是,太阳光通过水滴为什么会变成美丽的彩虹?白色阳光为什么会有不同的颜色?当时还是个谜。

1609年伽利略把望远镜用于天文观测,开创了光学天文的新时代。但在伽利略时代,望远镜质量非常差,光线通过这种望远镜所成的像总是模糊不清的。这一现象曾经使天文学家伤透了脑筋。然而正是这种使天文学家伤脑筋的现象,给探索太阳光奥秘带来了曙光。

为了改进望远镜的性能,1665年英国著名科学家牛顿开始了一项新的创造性的光学研究。这项研究是在一间不透光的黑屋子里进行的。做实验的时候,牛顿把门窗关得严严实实的,除了事先凿好的小孔以外,不让任何光线射进室里。

事先开凿的小孔允许阳光射进屋里。牛顿在阳光前进的路上放置了一块棱镜片,他想看一看阳光通过棱镜片的情况。装置装好以后,他惊异地发现,白色阳光通过棱镜片后,在对面墙壁上现出了一个五彩缤纷的彩色光带,红、橙、黄、绿、青、蓝、紫,像天空的美丽彩虹。

经过分析,牛顿得出结论:白色阳光不是单一的,而是复杂的,它由各种颜色的光线组成,棱镜片只是把它们区分开来了。

为了进一步探索太阳光的奥秘,牛顿又在棱镜片后面再放置一块同样的棱镜片,让前一块棱镜片后面的彩色光带再通过第二块棱镜片,两块棱镜片颠倒放置。这样一来,新的奇迹出现了,白色阳光通过第一块棱镜片后变成了色彩斑斓的彩色光带,而彩色光带通过第二块棱镜片后,颜色消失了,色彩斑斓的彩色光带又变成了白色阳光,和小孔里射进来的阳光完全相同。

至此,牛顿完全证明了白色阳光由红、橙、黄、绿、青、蓝、紫等颜色的光线组成的。这红、橙、黄、绿、青、蓝、紫组成的彩色光带叫做连续光谱。

像彩虹那样,由红到紫分布的连续光谱是太阳光谱的独一无二的成分吗?这个问题在牛顿之后很长时间没有得到解答。

1802年,英国物理学家渥拉斯顿重新做起了牛顿的实验。不过,他的实验装置不完全和牛顿的相同。他在牛顿装置的棱镜片前面加上一条狭缝,使太阳光经过狭缝后再经过棱镜片。应用这个装置,渥拉斯顿发现,太阳光里除了牛顿发现的连续光谱外,还存在一些暗黑的线条。很可惜,渥拉斯顿的发现没有引起人们的注意,以致埋没了十多年。

1814年,德国物理学家夫琅和费制造出一台分光镜。这种仪器不仅有一块棱镜和一条狭缝,还在棱镜前面加进了一个使狭缝出来的光线成为平行光的装置,在棱镜后面还有一架精密测量光线偏转角度的小望远镜。

夫琅和费用这个装置观测了油灯光。当油灯的光线通过狭缝进入分光镜后,背景上出现了一条条像线一样的明亮线条。这种线条叫做明线光谱。在这些光谱线中,有一对靠得很近的黄色谱线非常突出。他又用酒精灯和蜡烛做实验,这时一对黄线依然存在,而且还在原来的位置上。

夫琅和费又用分光镜观测太阳,他惊异地发现,太阳光同油灯光、酒精灯光和蜡烛光的光谱截然不同,在太阳光的光谱上,不是出现一条条明线光谱,而是在红、橙、黄、绿、青、蓝、紫的连续光谱上,出现了许多暗线。在1814~1817年期间,夫琅和费在太阳光里发现了500多条暗线。现在我们知道的暗线数目更多。这些暗线就叫做夫琅和费线。

这些暗线是不是偶尔在阳光里见到的呢?不是。在任何一次实验中,都可以看到。显然,它们代表了太阳上某些物质的特征。非常有趣的是,在油灯光、酒精灯光和蜡烛光中1对黄线的位置上,在太阳光谱里出现1对醒目的暗线。

为什么在油灯光、酒精灯光和蜡烛光谱里出现明线的位置上,在太阳光谱上出现暗线呢?当时无人能够回答。

火灾中衍生的太阳光谱

1850年,德国化学家本生发明了一种煤气灯,化学家们称它本生灯。由于本生灯几乎是无色的,很受化学家的欢迎。

本生像他们用本生灯炙烧试剂,可以方便地观察到,燃烧的物质不同,火焰的颜色也不相同,从而能分析试剂的成分。例如,用本生灯烧铜时,火焰呈蓝绿色;烧食盐、芒硝和金属钠时,火焰呈黄色;烧钾及其化合物时,火焰呈紫色。可是,用它烧几种物质的混合物时,火焰就分不清是什么颜色了。这个美中不足使本生感到苦恼。

1851年,本生结识了年轻的物理学家基尔霍夫,并且很快成了莫逆之交。基尔霍夫当时只有27岁。

一天,本生和基尔霍夫在一起散步,本生把自己的“苦恼”告诉了基尔霍夫。听了本生的话以后,基尔霍夫立刻想起了牛顿通过棱镜片把阳光分解成红、橙、黄、绿、青、蓝、紫连续光谱的实验,想起了夫琅和费发现太阳光里有暗线光谱。

他对本生说:“从物理学的角度来看,我认为应当换一个方法试试。那就是不直接观察火焰的颜色,而应该去观察火焰的光谱,这就可以把各种颜色清清楚楚地区别开了。”

本生采纳了基尔霍夫的意见,并且两人合作来做实验。他们装置了一架简单,但比夫琅和费分光镜更完善、产生的光谱更清晰的分光镜。用这种仪器观察在本生灯上燃烧的氯化钠、钾盐、锂盐、锶盐等物质的火焰时,分别看到了氯化钠有2条明显的黄线,钾盐有1条紫线,锂盐有1条明亮的红线,锶盐有1条清楚的蓝线。真是五彩缤纷,煞是好看。

然后,他们又将这些盐混合在一起燃烧,这时,黄、紫、红和蓝等线条清清楚楚显示出来了。

令本生“苦恼”的问题解决了,科学事业向前迈进了一步,两位科学家高兴极了。本生和基尔霍夫运用的方法叫做光谱分析法。这种方法证明:每一种化学元素不仅有一种特有的线条,而且它们在光谱上的位置是固定不变的。利用光谱分析法,我们就能确定星球上含有什么成分。

在古老的大学城海德堡西面16千米的地方,有一座热闹的港口城市,它的名字叫曼海姆。1859年的一个夜晚,曼海姆失火了,火光冲天,周围的夜空被熊熊的大火照得通明。正是这场火把光谱分析法引向了太阳。当时两位科学家正在这座城里。

本生和基尔霍夫在实验室里向外眺望时,看到了这场大火。两位科学家好奇地用分光镜观察这片火海。这一看获得一项新发现:他们在曼海姆的烈火中看到钡和锶的光谱。

这一发现在本生头脑中久久萦绕。一次在郊外散步的时候,他突然想到,既然可以用分光镜来分析曼海姆的火光,为什么不能用它来探测太阳呢?

本生首先分析了在油灯光、酒精灯光和蜡烛光中都有的1对黄线。这对谱线在自然界中分布得很普遍,稍不留心就会受到“污染”。本生是个细心的实验专家,他把本生灯清洗得干干净净,才做实验。经过一系列实验,他弄清了夫琅和费发现的这对黄线是受热的钠原子。

接着,基尔霍夫研究太阳光中的这对黄线。他让一束太阳光穿过发出黄色钠光的本生灯火焰。他以为如果太阳光中一对黄线是钠原子形成的,那么这一亮一暗的谱线就会重叠抵消。然而观察到的现象使他很惊异:加入钠的火焰后,黄线更暗了。

第二天,他用氢氧焰点燃石灰棒代替太阳作光源,重做昨天实验时,并没有出现暗线。这是怎么回事?经过分析,他发现产生钠焰的本生灯温度太高了,于是他把本生灯换成酒精灯,用酒精灯制造钠焰再做实验时,实验果然成功了。

他成功地观测到了同太阳光谱上完全一致的暗的黄线。由此,基尔霍夫悟出了一个道理:太阳内部温度很高,发出的光谱是连续光谱,太阳外部温度较低,在这里有什么元素,就会把连续光谱中相应元素的谱线吸收掉而出现暗线,例如在太阳外部如果有钠元素,就会在太阳光谱中1对黄线位置上出现暗线。

于是,在1859年秋天,基尔霍夫提出2条著名的定律:

(1)每一种化学元素都有自己的光谱;

(2)每一种元素都可以吸收它能够发射的谱线。

从1860年起,基尔霍夫和本生开始精心测量元素的谱线波长,并把它们同太阳光谱进行对照。第二年,他们就在太阳光中找到了氢、钠、钙、镁、铬、镍、铜、锌、钡等元素。太阳上有的化学元素地球上都有,这表明它们有同样的起源。

看,火灾对人类认识太阳起到了多么重要的作用啊!光是什么?从牛顿开始,许多科学家探索过这个问题,牛顿认为光是一种微粒,一束光就是一串小粒子,像连珠炮似的从光源射出。而惠更斯则认为光是一种波,像水面上荡漾的波浪,一起一伏地传播。这两种针锋相对的观点,经过长期的争论,谁也说服不了谁。

19世纪,在光学研究上有所突破,这主要是发现了光的干涉(两束光互相作用,产生明暗相间的条纹)、衍射(光线不是沿直线而是绕圈子前进)和偏振(光波有一定的振动方向)。这些发现雄辩地证明光是波动的。相反,光的微粒说则无法解释这些实验事实。这个时候,波动说占了上风。

但是1887年赫兹又发现了新的现象:用紫外线照射在电压很高的极板上,就能使极板间发生火花放电。1888年,斯托列托夫重做赫兹实验时,进一步发现,在电压不高的情况下,用紫外线照在带负电的极板上,也能使极板失去电荷。这种受到射线照射而产生或失去电荷的现象,叫做光电效应。

赫兹光电效应证明微粒说是正确的,而波动说却无法解释它。1905年,物理学家爱因斯坦提出了光的量子理论,他认为物质的原子和分子发射和吸收的光并不是连续的波,而是由特殊的物质组成的一个个的微粒。这种物质微粒称作光子。

经过反复研究,大多数的人已经认识到,光同时具有波动和微粒两种性质。按照它传播的方式,它是一种波,是电磁波这个大家庭中的一个成员;按照它输送能量的方式,它是一颗颗光子。

同类推荐
  • 科学的楷模(科学知识大课堂)

    科学的楷模(科学知识大课堂)

    为了普及科学知识,探索科学发展的历程,领略科学丰富多彩的趣味,弘扬科学名家的丰功伟绩,学习科学家不懈的创新精神与无私的奉献精神,培养青少年科学、爱科学的浓厚兴趣,并密切结合青少年朋友日常的生活与学习特点,我们组织编写了这套《科学知识大课堂》。作为一套普及科学知识的通俗读物,本书有别于专业的学术论著,侧重于知识性、趣味性、实用性,注重对青少年科技素质的培育、科学兴趣的培养、科学精神的塑造与科学方法的启迪,不求面面俱到,但求言之有物,物有所指,指有所发。
  • 破译曾经的难解之谜(科普知识大博览)

    破译曾经的难解之谜(科普知识大博览)

    要想成为一个有科学头脑的现代人,就要对你在这个世界上所见到的事物都问个“为什么”!科学的发展往往就始于那么一点点小小的好奇心。本丛书带你进行一次穿越时空的旅行,通过这次旅行,你将了解这些伟大的发明、发现的诞生过程,以及这些辉煌成果背后科学家刻苦钻研的惊心时刻。
  • 植物园的大影展

    植物园的大影展

    在人类进化的漫漫长河中,人类一时一刻也离不开植物界。开天辟地时至今,人体一直在不断接受各种植物的“馈赠”。如果一个人日复一日、年复一年地处于同植物的绝对隔离状态,那么人体,首先是大脑就会生出麻烦:无缘无由的坏心情相随而至。每个人都懂得,多一些郊游、多一些林中散步对身体和美好心情大有裨益。让我们投身可爱的大自然,尽情享受植物带给我们的身心愉悦吧!
  • 抗衡衰亡的现代医学(科普知识大博览)

    抗衡衰亡的现代医学(科普知识大博览)

    医学是以治疗预防生理疾病和提高人体生理机体健康为目的。狭义的医学只是疾病的治疗和机体有效功能的极限恢复,广义的医学还包括中国养生学和由此衍生的西方的营养学。无论是中医还是西医,从诞生至今,主要作用还是治已病。二十世纪末,全球医学界大讨论最终结论是:最好的医学不是治好病的医学,而是使人不生病的医学。
  • 动物与海洋(海洋与科技探索之旅)

    动物与海洋(海洋与科技探索之旅)

    海洋占地球表面积的71%,它孕育了种类繁多且数量庞大的生物资源。海洋动物是海洋中异养型生物的总称。它门类繁多,各门类的形态结构和生理特点有很大差异。本书介绍了各种海洋动物的生活习性,性格特点和生存环境,以及海洋生物作为人类所依赖的最主要、最直接的资源,怎样在提高海洋生产力的同时加强海洋环境的保护。
热门推荐
  • 最强神器手机

    最强神器手机

    当一颗圣心和手机融合之后,陈阳的手机就变成了神机。可以提取功法的阅读软件,能够为修炼进行指导的播放器,变成雷达的地图,偷听附近人谈话的收音机,能够种植神草的农场游戏,总之,他手机上一切的软件都发生了不可思议的变化。
  • 对不起我爱你是她

    对不起我爱你是她

    幸福的时间是要数着来的,不然稍众即逝,你不会晓得你的幸福存在了四季或者少了春夏或秋冬--黑巧克力和水
  • 战帝无双

    战帝无双

    我成不了天才,但是我却可以让天才都畏惧。我将在天地间留下我的足迹,万载之后我的威名将诸天万族传唱!感谢腾讯文学书评团提供书评支持!
  • 神选者游戏

    神选者游戏

    孤独的封神之路,再难也要一个人走下去。这是神选者的坚持。带着八年前最强神选者的记忆,重生回到八年前。命运给了徐长青另一次机会。错过的、被抢走的,都要一一夺回来。再回巅峰,点燃神火,天上天下,唯我独尊。--------------------------------------------------建了个书友群:203261354,欢迎喜欢讨论剧情的书友们加群
  • 恍如一梦见三生

    恍如一梦见三生

    繁花三千,终不敌似水年华;弱水三千,却不料故人心变。女主自白:我居然被套路了,我完全不知道作者想写什么,感觉自己进入了一个大坑,等了这么久男主没出现就算了,我TM居然还是块石头。注意!本文雷点较多,各种慎入!
  • 水煮红楼

    水煮红楼

    本书以《红楼梦》的人物和情节为框架,在虚拟的“大观园时装有限公司”里搬演了一幕幕生动的职场活剧,为读者展示了管理学的真相,解答了一系列家族企业管理常遇到的难题。
  • 高冷少女的命运

    高冷少女的命运

    她因十年前一个看似是意外却不是意外的事而封闭了自己的内心而变成冰冷。一年后因某种原因而进入一个强大的情报组织进行秘密训练两年。两年后离开开了组织进入了演艺圈成为歌手一年后离开了歌坛建立了属于自己的帮派、势力。势力在不断的扩大,三年后回国…
  • 逆天狂妃:废柴小姐太妖娆

    逆天狂妃:废柴小姐太妖娆

    杀手界排名第一,代号魅狐,竟看错人,被所爱之人和闺蜜背叛。一朝穿越,她成了她。堂堂杀手,竟成废柴?不怕不怕,休整一下,且看我如何逆了它的天下!神魔同体,天地不容?我神器在手,神兽左右,谁人拦我?可她还是栽在了他的手上。他,是来自高等界面的王者,在这小小的冉月大陆的小小的北皓王朝当一个战神王爷。不近女色,冷漠无比。可她却不这么认为。“娘子,你都好久没陪我睡觉了。”某腹黑男扮可怜道,“不要。”某女淡淡的说。“哼,娘子要抛弃我,呜呜呜。”说着扑到了某女,某女咬牙切齿说“放开我!”“不要!”某腹黑男把某女吃干抹净。“娘子,你若是想逆这天下,我陪你又有何妨!”某男浑身绝代风华,道出了这句霸气的话。
  • 蚁生

    蚁生

    《蚁生》以王晋康年轻时作为知青下乡的经历为背景,寓理想、诙谐于苦难的现实之中,真实地再现了当年那段波澜壮阔的历史,又把它放到“人类本性”的高度来认知。那些正需要吮吸知识营养的一代青年,却在上山下乡的大背景下,远离父母及熟悉的城市生活,在无法自己选择的社会浪潮中艰难地生存着。爱情纷争,情敌忌恨,眼看优秀青年颜哲命悬一线,不料峰回路转,
  • 相思谋:妃常难娶

    相思谋:妃常难娶

    某日某王府张灯结彩,婚礼进行时,突然不知从哪冒出来一个小孩,对着新郎道:“爹爹,今天您的大婚之喜,娘亲让我来还一样东西。”说完提着手中的玉佩在新郎面前晃悠。此话一出,一府宾客哗然,然当大家看清这小孩与新郎如一个模子刻出来的面容时,顿时石化。此时某屋顶,一个绝色女子不耐烦的声音响起:“儿子,事情办完了我们走,别在那磨矶,耽误时间。”新郎一看屋顶上的女子,当下怒火攻心,扔下新娘就往女子所在的方向扑去,吼道:“女人,你给本王站住。”一场爱与被爱的追逐正式开始、、、、、、、