红外光谱仪在093~24微米范围内划分256个谱段。利用这些数据,可精确地确定各种矿物的成分。例如,可将月壤中的辉石与橄榄石辨别出来,这对了解月球外壳物质的演变是很重要的。这种红外光谱仪是由欧空局第一次研制和使用的,如果在探月中获得成功,将在未来的火星探测、水星探测、小行星和彗星探测中进一步应用。
小型X射线光谱仪用来测量X射线荧光,从而绘制月球表面的元素成分图。利用这些数据,可准确地计算月球外壳的成分,研究南极的陨石坑结构特征,绘制月球资源分布图。这种小型X射线光谱仪也是今后水星和太阳系其他行星探测的必备仪器。
“智慧1”号还是世界上第一个利用太阳能电火箭作为推进装置进行远距离飞行的航天器。
按照预定计划,“智慧1”号的整个飞行过程分为发射与早期入轨、地球逃逸、月球俘获和月球观测4个阶段。除了发射采用化学火箭外,包括早期入轨在内的其他阶段的飞行都依靠太阳能电火箭提供推力来完成。这是它最为突出的特色和亮点。但是,由于电火箭产生的推力很小,加速很慢,故而进入最终飞行状态需要的时间要比采用化学火箭所用的时间长得多。
为“智慧1”号提供飞行动力的太阳能电火箭发动机,严格说来是太阳能等离子体发动机。它使用氙气作为工作介质,并采用高效的砷化镓太阳能帆板将太阳光能转换成电能进而产生电磁场,利用电能电离氙气原子,形成等离子体,再通过电磁场的作用,使氙离子流高速喷出,从而为“智慧1”号提供推力。这种太阳能电火箭比通常使用的化学火箭效率要高10倍,所需推进剂即工作介质较少,可使航天器有更多的空间装载有效载荷。由于它利用的是取之不尽的太阳能,故而能在太空无重力状态下连续运转几年时间。它的缺点是推力和加速度都很小,要使航天器达到预定的飞行速度,用时很长。它的重要意义在于,假若这次飞行试验成功,今后就会在更远距离航行的航天器上采用这种推进系统。
为了掌握太阳能等离子体发动机的实际技术性能,“智慧1”号上装置了电推进诊断组件,用来监测推进系统的工作情况及其对航天器的作用效果。同时,它还携有航天器电势、电子与尘埃实验件,用以监测推进系统对电子通量、电场和航天器电势的影响,并研究地月空间的带电环境。此外,它还载有用来试验地球与遥远航天器之间的激光通信技术、实验航天器自主导航计算机技术等先进设备。
在“智慧1”号上所试验的太阳能等离子体发动机等新技术和它采用的多项探测技术,如被证明达到了预期的效果,将会对未来欧洲乃至世界航天技术的发展产生深远影响和重要作用。
欧洲“智慧1”号携带的主要科学仪器及其任务
仪器名称目的主要任务电推进诊断组件新技术实验监测推进系统的工作及其对航天器的影响航天器电势、电子与尘埃实验件新技术实验监测推进系统对电子通量、电场和航天器电势的影响,研究地月空间的带电环境深空X/Ka波段测控试验件新技术实验试验地球与高速飞行的航天器之间的下一代无线电通信技术,由深空转发器在X波段接收指令,并在X和Ka波段发射遥测数据
不甘示弱的日本
1996年,日本提出了建造永久月球基地的计划,预计投资260多亿美元,在2030年建成月球基地,包括居住舱、氧和能源生产厂以及月球天文台。
日本于1970年发射了第一颗人造卫星,此后的很长一段时间内,日本都处于国际航天业的前列。在“飞天”号科学卫星绕月成功后,日本航天界信心大增,1991年又制定了别出心裁的月球探测计划,其中包括研制和发射“月球A”号和“月女神”等探测器。1994年,日本制定了一个更加雄伟的计划:投资260多亿美元,在2024年建成一个6人的月球基地,包括居住地、氧和能源生产厂以及月球天文台等。
“月球A”号由日本空间和宇宙科学研究所研制,重540千克,计划在上面搭载两个各高80厘米、直径16厘米的“矛型”钻探装置,卫星到达月球表面以后,两个钻探装置将插入月球地表,装置上携带的地震测量仪、热流量计等科学仪器将探测到的数据向卫星传送,再传回地球。
“缪斯A”月球探测器
日本“飞天”号探测器1990年1月24日,日本宇航研究开发机构,用M—3S2—5型火箭成功发射了“缪斯A”月球探测器(又名“飞天”号探测器),同时还搭载有“羽衣”环器,由于星箭分离时速度太低,探测器的远地点只有290000千米,后经多次变轨才达到远地点为476000千米的正常探测轨道。“飞天”探测器共绕月飞行了10圈,离月球最近的探测距离为16472千米,它于1993年4月10日在结束其使命后撞向月球。
子卫星“羽衣”重12千克,外形是一个26面体,上面装有一个4千克的固体发动机,用于环月探测,其太阳翼可以提供10瓦的电力,在“羽衣”的顶部安装有转发器和全向天线,用于数据传输和测控。原计划在1990年3月18日“飞天”探测器首次到达近月点时被释放,但由于转发器发生了故障,“羽衣”未能被释放,无法开展探测工作。
“月女神”
2007年9月14日,日本用H—2A火箭成功发射了“月女神”环月探测器,并搭载有“中继星”和“甚长基线干涉测量星”两个子探测器。两个子探测器均分离成功。“月女神”重量为3000千克,设计寿命1年,环月高度为100千米,共载有X射线光谱仪、γ射线光谱仪、多波段成像仪、光谱剖面仪、地形相机、月球雷达探测器、激光高度计月球磁强计、带电粒子光谱仪、等离子体分析仪等15种探测仪器。两个子探测器各重50千克,分别负责从探测器到地球的通信传输和精确测量月球的位置及运动情况。
“月女神”探月计划是自美国“阿波罗”计划以后规模最大,同时也是最复杂的探月计划。日本科学家希望通过随身所带的仪器了解月球表面成分和矿物组成、月球表面的结构、重力场、磁力场、高能粒子环境以及月球的等离子区等。通过上述研究活动,希望进一步揭开月球的起源及演进的秘密。
“月女神”探测器计划由日本宇宙开发事业团与日本空间和宇宙科学研究所共同实施。该计划的主要目标是解决探索太阳系所必需的关键问题,特别是软着陆和数据中继技术。日本称“月女神”是日本未来月球探索计划的第一步,将为2024年日本建立有人月球基地奠定基础。
目前,日本已在月球机器人上技高一筹,积累了丰富的技术经验。日本宇宙科学研究所和东京大学开发成功了一种月球探测鼹鼠机器人,它的外形是一个直径10厘米、长20厘米的圆筒,可以像鼹鼠一样钻入月球地下11米,采集矿物质加以分析,弄清月球地表的结构。它有排沙和掘进两种装置,排沙装置有两根旋转的滚柱,能把挖出的沙石碾轧结实,掘进装置则把活塞顶在碾轧后的沙石上,用活塞推动身体前进。研究人员下一步的任务是制作月球地面配合设备,设计中的地面设备直径为20~30厘米,内装有太阳能电池。月球地面设备除了向机器人供应电力之外,还负责接收机器人的探测数据,向地球发送信号。
印度:后生可畏
印度将在俄罗斯的帮助下,在2011~2012年间,实现“钱德拉扬2”号探测器登月计划,在月球表面进行探测。
印度的航天事业从1962年起步,经过40多年的发展,如今在世界航天国家中占据重要的一席。在月球探测中,印度同样不甘落后。
2003年年底,印度设计制造的一台使用液氢、液氧为燃料的低温火箭发动机在地面试验中成功燃烧了1000秒,超过了太空飞行所需的721秒的最低要求。这次试验的成功使得印度成为继美、俄、法、中、日之后世界上第6个有能力自行制造低温火箭发动机的国家。随着印度研制的低温发动机取得巨大进展,加上已有的卫星遥感技术走在世界前列,印度实施月球探测计划的技术已经成熟。
印度极轨卫星运载火箭发射情景也是在这一年,印度启动了月球探测计划。该计划代号为“钱德拉扬”(即“月球初航1”号),准备耗资8500万美元,在2007年发射一颗重1050千克的绕月卫星。
印度绕月卫星将由印度极轨卫星运载火箭发射,最终进入距离月球100千米的月球极地轨道运行,对月球表面进行两年的探测,主要任务是测绘地貌、分析化学成分和调查矿物分布。
印度科学家目前正在加紧研制32通道的频谱仪、低能和高能X射线频谱仪、太阳X射线频谱仪和激光测高计。另外,用来测量极地水冰的合成孔径雷达将由美国约约翰霍普金斯大学的应用物理实验室研制。为了接收月球探测器的信号,印度正在建设34米直径的天线,印度卫星测控中心的专家认为,对于印度的探月任务来说,25米直径的天线就足够了,但为了今后的深空探测任务,必须留有余地。
2004年11月22日~26日,第6届月球探测与应用国际会议在印度召开,印度不但以自己的月球计划吸引了全世界的眼球,也以辉煌的航天成就向世界证明了,印度正在成为具有全球影响力的航天大国。
美国与八国合作探月
2008年7月29日,美国宇航局在华盛顿总部宣布,美国与印度、韩国、日本、加拿大、英国、法国、德国、意大利署一份合作协议,将共同开展探月活动。