登陆注册
6736400000006

第6章 科学与世界(5)

玻尔经过长时间的思考,仔细琢磨实验数据,运用计算尺(在计算器和计算机发明之前,人们历来都使用这一计算工具),写下各种方程式。玻尔想,如果把普朗克的量子理论运用到原子模型,事情会怎样呢?19世纪的物理学家已经发现,每种元素加热后都会产生某种特征性光谱。例如,钠只发出特殊波长的光,即黄光,钾发的是紫光,等等。在普朗克理论看来,这就意味着每种元素的原子只产生携带特殊能量的光量子。玻尔提出一种原子模型来解释其中的原因。

玻尔成功了,他指出,电子围绕原子核旋转不能取任意轨道。因为所有的原子在功能上是相同的,所以在形状上无疑也是相同的,他提出,任何元素的电子只能沿被允许的特定轨道运动,这些轨道离核的距离是特定的。轨道的半径决定于普朗克常数——因此能量也是这样。他说,只要电子在允许的轨道上运动,它们不发射电磁能量。但是电子可以自发地从一个轨道跳跃到另一个轨道,这时它们的能量状态有所改变,就以波包即量子的形式吸收或释放能量。跃向靠近原子核的内侧轨道,由于轨道半径更小,电子会释放能量。当跃向远离原子核的外侧轨道时,轨道半径变大,电子要吸收能量。

玻尔对氢原子中的单个电子作了计算,计算出从一个轨道跳跃到另一个轨道时所涉及的能量。然后,假设能量转变为光(光子或电磁能量子),由此算出产生的光波波长。果然有效。他的计算与氢光谱相符,在这以前,氢光谱一直是无法解释的谜。物理学家已经观测到特定元素的原子会发出特定的光谱,但在此之前一直无法解释其中的道理。玻尔则相当精确地解释了这一点。

这是伟大的一步。当爱因斯坦听到数据与光谱是如何吻合时,他欣喜若狂,声称“这是最伟大的发现之一”。玻尔成为20世纪原子理论的奠基人。

但即使玻尔已经把量子理论首次成功地运用于物质的物理学,但他也承认这一理论仍然存在大量未解之谜。

“思考这些问题使我困惑无比”,一位来访者曾如此向玻尔埋怨。“但是,但是,但是……”玻尔结结巴巴而又不失真诚地说道,“如果有人说他在思考量子理论时毫无困惑,那他一定是缺乏对量子理论最起码的理解”。

当然,玻尔的原子模型无论如何也不是定论。我们关于原子的概念从他1913年宣布原子模型以来已经有了很大变化。在那些对原子理论的发展作出贡献的人们中间,有一位来自德国的年轻人,他行为古怪却才华横溢。

泡利的不相容原理

泡利(Wolfgang Pauli,1900—1958)在实验室里表现笨拙,在演讲厅里也远非口若悬河。他身材矮胖,有点像电影演员劳瑞(Peter Lorre,1904—1964)。但他却轻易就能看透问题的实质。在慕尼黑大学他师从索末菲(Arnold Sommerfeld,1868—1951)做博士论文,然后分别在哥本哈根追随玻尔以及在格丁根做博士后研究。后来迁居美国,进入普林斯顿的高等研究所,1946年成为美国公民。

泡利关于泡利不相容原理的直觉,源自他对所谓“塞曼效应”(以荷兰物理学家塞曼(Pieter Zeeman,1865—1943)的名字命名)的研究。作为科学家,他不免会经受挫折:还在成名之前,有一次拜访玻尔时,泡利显得闷闷不乐和充满沮丧,玻尔夫人(Margrethe Bohr)对他表示关切,他暴躁地回答说:“我当然很不高兴!我无法理解反常的塞曼效应。”

泡利把自己的工作建立在大量数据基础之上,从中找出一个在所有情况下都有效的简单分类原理:在任何基本粒子体系中——例如原子中的电子群——没有两个粒子会以同样的方式运动,也就是说,占有同样的能级。1925年他宣布了不相容原理,后来证明适合于其他核粒子,这是当时人们连做梦也没有想到的。这一概念成为量子力学的重要组成部分。

不相容原理解释了为什么原子中不是所有的电子都陷入最接近核的轨道上,既然落在这一轨道上只需最少的能量。这是因为一旦有一个电子占据某一轨道,它就会排斥任何其他电子占据同一轨道。泡利由于这项工作在1945年获得了诺贝尔物理学奖。

泡利还解开了另外一个谜:当原子辐射β粒子时(β粒子实际上是高速的电子),某些能量似乎是遗失了。这一情况显然违反了能量守恒定律,物理学家难以认同这样一个到处适用的普遍原理在此却失效这一例外。1931年,泡利假设,在辐射β粒子的同时,还辐射另外一种非常微小的粒子,这种粒子不带电荷,甚至也可能没有质量,却把看似遗失了的能量带走了。次年,费米(Enrico Fermi,1901—1954)给这种粒子取名叫中微子(neutrino,意大利文,表示小的中性粒子)。有些人怀疑泡利是不是在玩弄某种账簿骗局——发明一种不存在的粒子,使能量收支账目看上去平衡。但是在1956年,人们利用一家核电站完成了一项精彩实验,证明幽灵般的中微子确实是存在的,这才使泡利得到了平反。薛定谔

粒子和波

自从泡利提出不相容原理(1925)之后,一群才华横溢的年轻物理学家似乎占据了舞台。两年前,在巴黎,德布罗意(Louis de Broglie,1892—1987)提出,如果亚原子粒子同时也可被看成是波,就可从理论上简洁地推出结果。这是一个简单而新颖的思想,对此你忍不住会说:“啊,这是怎么回事?如果真是这样,又会怎样呢?”根据普朗克和爱因斯坦的理论,近来大多被看成是波的光,应该是粒子。现在德布罗意又说,粒子——电子甚至原子——有时也表现出波的行为。当这一理论用实验检验时,结果证明他是对的。这一令人难以置信的概念叫做波粒二象性。

这一思想立即得到物理学家的认同。薛定谔(Erwin Schrodinger,1887—1961)得出了关于德布罗意波的数学公式。这是观察原子的另一条途径。人们在想,波或粒子,究竟哪个对?最后薛定谔证明,两种表述在数学上是等效的,他的论文发表于1926年。尽管这一结果并不是人人都满意的解释,却使物理学家高兴,因为这是在数学上完备的原子理论。

这里只有一件事情错了:薛定谔认为电子是波,某种“物质波”,而且他的方程式对此完全有效。但是,有些情况却并不完全适用。同年,另一位物理学家玻恩(Max Born,1882—1970)提出,薛定谔在方程中描述的并不是电子本身,而是在任何给定位置上能够发现电子的概率。例如,如果你用电子轰击一个壁垒,有些电子会穿越壁垒,有的电子则被弹回。玻恩认为,你可以描绘单个电子可能出现的概率,比如说,穿越壁垒的概率是55%,而反弹的概率是45%。因为电子本身不可分,因而薛定谔的波动方程描述的并不是电子本身,只是它可能的位置。

1988年诺贝尔物理学奖获得者莱德曼(Leon Lederman,1922—)认为,玻恩的解释是“牛顿以来我们的世界观中最具戏剧性的重要变化”。但薛定谔对此并不乐意,当时许多其他经典物理学家也是如此。玻恩的概率意味着,得到牛顿定律认可的决定论现在已经过时了。这一解释加上量子理论,意味着对于你需要测量的任何东西,可以知道的只是概率。

但是,玻尔、索末菲、海森伯等人却是冷静地对待玻恩的思想——这些概念似乎是合适的——他们继续这项激动人心的工作,以便使一切都顺理成章。在这些勇于挑战的人中,英国物理学家狄拉克(Paul Dirac,1902—1984),年方二十多岁就在使量子论和相对论相统一的基础上,为电子提出了一个优美的新方程(后来称为狄拉克方程)。1930年,他在为这些方程求解时,居然得出这一令人惊奇的结论,不管物质存在于什么地方,总有它的镜像存在,他称之为反物质。例如,一定存在着与电子具有同样性质的另一种粒子,只有一个重要区别:它不像电子那样带负电,而是带正电。他的思路令人想到诺埃特(Emmy Noether,1882—1935)的对称性思想以及如下事实:一个数的平方根可以是正数又可以是负数(例如,4的平方根是+2和-2;2×2=4;(-2)×(-2)也等于4)。狄拉克的方程告诉我们,有待寻找的是带正电的电子。后来,1932年,年轻的物理学家安德森(Carl David Anderson,1905—1991),在加州理工学院用强大的磁铁和云室做实验时,捕捉到了这样一种粒子,这种亚原子粒子的径迹,和电子很相似,只是被磁场拉到相反的方向,他把这种新粒子叫做“正电子”。

不确定性的作用

与此同时,1927年,海森伯提出了另一种奇异的物理理论——不确定原理。这条原理的意思是:电子的精确位置和瞬时速度不能同时确定。换句话说,当撞击一个电子时,不能确定说出,电子会被撞到哪里,只能说它可能撞向哪里。人们只能作出统计预测。

这个思想概括了我们叫做量子理论的伟大科学革命。不过,仍有许多问题尚待解决,量子场论今天仍在发展。有些科学家认为,这一理论并不完善,除非它与引力理论完全结合。

爱因斯坦从未承认过不确定原理,对此,他与玻尔之间有过持久激烈的论战。这是两个朋友之间的争论,他们相互尊重对方的智慧,争论一直持续到爱因斯坦生命的最后一刻。爱因斯坦去世后多年,玻尔仍然在修改为了说服爱因斯坦所画的那幅插图。玻尔去世的那一天,他的黑板上画的就是那幅草图,他的内心深处从未中止过与他的老朋友的对话。

事实上,玻尔在讨论中也作出了自己的贡献,这就是他于1927年提出的所谓互补性原理,认为一个现象可以通过两个相互对立的方式来看待,这两种角度在各自范围内同时有效。不过爱因斯坦对这一概念感到难以认同。

这些熠熠生辉、至关重要、激动人心的思想确实会带来某种令人不安之感。关于量子,理论物理学家费恩曼常常对他的学生说:“我想我能够有把握地说,没有人懂得量子力学……你要尽可能避免这样来问自己,‘但是它怎么会是这样?’因为这样你将‘掉到排水沟’,走进死胡同,再要出来可就难喽。没有人知道它怎么会成那样。”事实继续证明,它就是这样。

当然,在那些激动人心的年代里,构建原子和量子大厦的人物远不止这几位——他们只是更为杰出的几位。更多的人作出的贡献是:统计电子打到荧光屏上的成千上万个亮点,设计仪器,提供思想,激发新的观点。科学已不再是哥白尼在他的城堡里单枪匹马的努力,或者伽利略通过他的望远镜独自向天空窥视,而是越来越多地成为团队之合作。许多男女英雄们默默无闻,他们之中也有知名人士,但对于一本小书来说,实在难以容纳。但是团队合作——实验家验证理论家,理论家从研究数据中得到灵感——已经越来越处于科学必经之路的中心。

当然,孤独的科学家仍然通过多种途径在研究天空和宇宙。

宇宙的新观测

天文学家和天体物理学家也从19世纪继承了丰富的遗产。改进后的望远镜使得对太阳系及更远处的观测有了更高的精确度,天文学家发现了许多小行星和海王星。天文学家还开始运用新的观测设备,照相术提高了人眼观察天空的能力,光谱学提供了大量有关远近天体所含成分的特殊新信息。

20世纪里,天文学家利用照相术、光谱学和有关辐射的新发现迅速加深加宽了人类对宇宙的认识。这些工具使他们得以进入新的探索领域、确定星体的位置和亮度、发现新的天体,并且对恒星进行分类和编目。天文学紧紧跟上物理学和化学的步伐,对宇宙及其大小、形状和特性的认识迅速增长。

宇宙射线

1910年3月10日的巴黎,寒风料峭。艾菲尔铁塔塔顶寒意阵阵。这座铁塔21年前刚刚建成,巨大的钢梁伸向几近1 000英尺的天空,这是巴黎的最高建筑了。就在这个特殊的日子里,来自荷兰法肯堡的一位耶稣会士物理教师伍尔夫神甫(Father Theodor Wulf,1868—1946),从升降机走出来,把仪器拉到观测平台上,他不是普通的观光客。他站在远远高出战神公园的地方,运用玻璃和金属仪器,测定在此高度空气的导电性。

他的发现使大多数人感到惊奇,因为空气平常是完全不导电的。但伍尔夫是一位“放射性小组”的成员,该小组研究的是1896年贝克勒尔发现的神奇辐射。因此他认为这个问题值得研究。他知道,用静电计(这种仪器就像瓶子里的天线)可以测量辐射源的强度。当靠近铀时,静电计的金属箔片会张开,当它们向周围空气放电时,箔片又合拢。放电越快,辐射源越强。但是,伍尔夫发现,这些测量仪器有时似乎在“漏电”,即使附近没有铀块存在,也有缓慢放电。这一残余放电扰乱了数据读取,但是没有人能够避免这种情况出现。1909年,伍尔夫发明了一种高灵敏度静电计,用它更容易显示放电过程,因为它精密得多。

这一奇怪现象的根源是什么?全世界的地质学家、气象学家和物理学家都开始用伍尔夫的静电计进行试验。伍尔夫测试了德国、奥地利和瑞士阿尔卑斯高地等许多地方。残余放电似乎到处出现,但是程度有所不同。难道放射性是从地壳中逸出来的?伍尔夫爬上艾菲尔铁塔就是为了进行这项试验。在铁塔的高处,他的仪器与地壳表面相距1 000英尺,应该能够消除任何来自地球本身的放射性影响。他花了四天时间做试验,但静电计一直在放电。他的结论是,一定是“或者在大气的上方有另一辐射源,或者空气对辐射的吸收要比假设的弱得多”。

大约与此同时,来自新成立的维也纳镭学研究所的赫斯(Victor Hess,1883—1964)也加入到这场争论中。在1911年和1913年之间,他带着静电计登上气球升空,不止十次。一般的结果是,当气球上升时,放电减慢,但总是存在放电现象,而且减慢速度也不像假设辐射来自地壳所预期的那样快。赫斯的确被迷惑了。随后在第九次升空时,他注意到一种特殊的变化。在15 000英尺高处,放电的速率竟是平常在地面观测时的两倍。赫斯得出了奇异甚至怪诞的结论:“那种具有极强穿透力的射线来自大气层上空,来自最深的太空。”

同类推荐
  • 我们的生活不能没有植物:人与植物

    我们的生活不能没有植物:人与植物

    人类对于植物家族的依赖可能会超乎你的想象,从人类的每一次呼吸,到我们餐桌上的美食佳肴;从装点时尚世界的服装霓裳,到美化人们生活环境的花花草草,人们无时无刻不在接受着植物世界默默的馈赠。《青少年科普图书馆·我们的生活不能没有植物:人与植物》即介绍了植物在人类生活中的所扮演的重要角色。
  • 兽王·恶魔之土

    兽王·恶魔之土

    倒霉的墨菲特因为被困在虫巢中,只能向兰虎立下誓言,以获得兰虎的救援。当他恢复健康后,为履行誓言而带着兰虎前往一颗充满恶魔的巨大星球,寻找传说中的生生之土。生生之土又名恶魔之土,诅咒之土。这种土壤一小点就蕴含着大量纯粹的土系能量,是炼制守护碑的绝佳材料,因此兰虎毫不犹豫地与墨菲特一起穿越空间,来到了这个主人是恶魔的星球……这颗星球到处是火焰、高温和熔浆,这里的生物大多性格凶悍,战争对它们而言就像是家常便饭一样,随时发生。穿越空间来到这里的兰虎为了生存下去,不得不伪装成恶魔,加入了一个恶魔首领的军队……
  • 老爸老妈一根筋(倒霉蛋阿歪)

    老爸老妈一根筋(倒霉蛋阿歪)

    《倒霉蛋阿歪》系列丛书围绕主人公阿歪展开情节,分别讲述了阿歪在学校、家庭中遭遇到的种种事情,突出反映了小学校园里学生之间、师生之间的有趣情境,以及家庭生活中父母和孩子之间的相处艺术,反映了现代小学生群体活泼灵动的生活面貌及可爱无矫饰的个性特征。故事幽默搞笑,其中不乏关于善良、友谊、家庭教育、学习、成长等启示。
  • 亲吻丰收的土地

    亲吻丰收的土地

    品德即道德品质,是道德在个体身上的体现,是指个人按社会规范行动时所表现出来的稳定特性,是人们依据一定的社会道德准则和规范行动时,对社会、对他人、对周围事物所表现出来的稳定的心理特征或倾向。
  • 与野生动物共舞

    与野生动物共舞

    动物是大自然留给人类的无价之宝,它是我们人类的朋友。它们的生衍死灭与我们人类的生活是密切相关的。消灭动物,就是在消灭人类自己。如果有一天世界上的动物全都消失了,那人类还能生存吗?动物的大量毁灭对人类将产生严重的不良后果,造成生态严重不平衡,从而使人类的生存环境遭到破坏。让我们从现在做起,从我做起,保护动物,使世界变得更美好吧!保护动物,就是保护人类自己!
热门推荐
  • 灵隐璇玑

    灵隐璇玑

    小透明平凡的一生中,从遇到了那个逗逼的他开始,变得不再平凡。从此,在她眼前展开的,不再是农家日常,而是整个灵隐修真界的五光十色。
  • 超能少年特种兵

    超能少年特种兵

    五个少年精英被莫名其妙的绑到了军营里。他们的命运会如何。他们将如何去完成他们的任务。
  • 青春的迷惘你怎样走过

    青春的迷惘你怎样走过

    青少年步入青春期会遇到种种心理困惑和心理障碍,这是一本专门献给中学生阅读的心理咨询参考书。作者积20余年从事心理研究及心理咨询的经验和体会,通过丰富的案例,以咨询手记的方式引出青少年青春期目前存在的各种心理困惑和问题,然后进行对话式分析和诊断,最后提出解决问题的对策和建议。本书的风格和特点:有故事、人物和情节,语言流畅,情感真挚,娓娓畅述,可读性强;对心理问题的诊断,分析透彻,以理服人,以情感人,步步递进,环环相扣,入情入理;解决问题的建议和对策,表达清晰,观点鲜明,实用性强。使读者能在轻松的阅读之中,给自己心中的世界洒一片阳光,在阳光中走上心灵自救的成功之种。
  • 寒武神凰

    寒武神凰

    一根冰晶羽毛,却是上古轮回冰凰的本命尾翎。所碰之物,无论神,魔,仙,凡,妖,兽,怪,皆能幻化,万象轮回,一切都是它的镜子虚影。仙崖村一平凡小少年,偶得冰羽,眼界大开,接触一个未知的世界,引出一段尘封的冤孽,上一代恩怨,为何祸及无辜,他问,我到底是谁?
  • 雨诺成殇

    雨诺成殇

    一场大雨街边偶遇温柔的眼眸让我找回自己本以为我们相爱是天注定可世事不如人温柔的背后是一场怎样的阴谋虚幻的爱情会开花结果吗?爱上他是我的宿命若我从未遇见他我想我永远不会明白我活下去的理由所以我不曾后悔。
  • 我的夫君:你的名字我的姓

    我的夫君:你的名字我的姓

    我同我最爱的人只剩下远远相望时,他告诉我人要学着固执是为了在必要的时候变通救赎自己。我想问他如果我不去救赎自己你会救我吗?正如那日在海里你若知道我不会游泳,可还会了无牵挂的去救你如今的妻子,任由我绝望得让海水淹没我的心脏。这是你的婚礼,我作为你的家人我毫不犹豫的站在你的身边,美名其曰我是你的家人,和你血液相连最亲最近你生生世世摆脱不了的姑娘。我一直幻想如果那天他们都没有来,我一定会把你拉下深渊陪着我坠入地狱。哥哥,这是我唯一可以疯狂宣誓你是我的人的词,我问你,你的固执是不是为了遗弃我?你的变通是不是把我从地狱的天堂遣送到你婚礼的殿堂!
  • 盐道枭雄

    盐道枭雄

    清道光三十年(1850年),清廷积疾难返,官吏腐败,衰弱日显,民不聊生,以通州知府陈之道为首的一批正直志士,不畏权贵,与贪官污吏、恶霸进行坚决、巧妙地作斗争,拯救灾民于水火,最终打败对手,情节跌宕起伏。反映了在封建社会,生活在底层的人民奋勇抗击的悲壮历史。
  • tfboys遇见你是我的源

    tfboys遇见你是我的源

    胡欣雨,15岁;性格:在别人面前很冷漠,在熟悉人面前会很发疯。爱好:看书,唱歌。王文欣,13岁;性格:可爱,贴心和调皮。爱好:聊天、学习、玩。江凤怡,14岁;性格:很胆小、帮别人工作。爱好:吃货、学习。
  • 中老年人该怎么吃:饮食与健康知识问答

    中老年人该怎么吃:饮食与健康知识问答

    本书针对中老年人的生理特点及饮食需求,从食品营养专家的视角出发,深入浅出地讲述了饮食与健康的密切关系及相关知识,科学地回答了中老年人究竟应当怎样吃才能实现健康长寿的一系列问题。
  • 云嫣然

    云嫣然

    万卷山东南,有女叫嫣然。落处有馨花,闭目云成端。情动婆娑起,鸿蒙是劫难。舍魂舍神身,墓碑留神山。