登陆注册
6555900000076

第76章 著名物理学家

◆原子时代的拓荒者——康普顿

康普顿(1892~1962)是美国物理学家。他由于对x射线的散射现象进行研究,并根据爱因斯坦的光子理论做了科学的解释,从而发现了“康普顿效应”,即短波长电磁辐射射人物质而被散射后,在散射波中,除了原波长的波以外,还出现波长增大的波。散射物的原子序数愈大,散射波中波长增大部分的强度和原波长部分的强度之比就愈小。这一发现对能量力子理论的进展,做出了重要贡献。因此,他获得1927年度诺贝尔物理学奖。

康普顿不仅发现了“康普顿效应”,而且也是人类原子时代的一颗巨星。“二战”后期,以爱因斯坦为首的一批著名物理学家联名写信给罗斯福,建议对原子能的利用立即进行研究。罗斯福马上任命成立以康普顿为领导人的“铀顾问委员会”。之后,又拨巨款作为研究经费。

1942年11月12日下午,人类科学史上第一次链式反应实验成功了,人类从此步入了神奇的原子时代。

◆理论物理学的核心——泡利

泡利(1900~1958)是瑞士籍奥地利理论物理学家。在理论物理学的每个领域里,泡利几乎都做出过重要的贡献。

1924年,他发表了著名的泡利不相容原理,该原理指出:原子中不可能有两个或两个以上的电子处于同一量子态。这一原理使当时许多有关原子结构的问题得以圆满解决,对于正确理解反常塞曼效应、原子中电子壳层的形成以及元素周期律都是必不可少的。泡利因此荣获1945年诺贝尔物理学奖。

1958年12月14日,泡利在瑞士苏黎世逝世。在他的葬礼上,人们赞誉他是“理论物理学的核心”。

◆量子力学的创始人——海森伯格

海森伯格(1901~1976)是德国物理学家,量子力学的创始人。量子力学,是研究微观粒子运动规律的理论,是现代物理学的基础理论之一。物质都是由原子构成的,但原子并不是物质的最小单位,原子是由一个原子核和围绕核运动的若干个中子构成的。其中原子核还由若干个质子和中子构成。从现代科学水平看,中子、质子都属于构成物质的基本粒子。据最新统计,已经发现的基本粒子就有300种以上。对于物质结构的层次,由于出现了量子力学,才使人们的认识随着科学的研究不断加深。

海森伯格对原子论和核子论的创新见解引起了学术界的瞩目。后来,他又进行了一系列的研究。如果说过去探索物质结构的秘密,是在黑暗中进行的话,那么自从有了相对论和量子力学以后,现代物理学就有了强大的探照灯,它照亮了科学向前发展的道路。因此海森伯格在1932年获得了诺贝尔物理学奖。

◆粒子学大师——费米

费米(1901~1954)是意大利物理学家。1922年获比萨大学博士学位。1923年前往德国,在玻恩的指导下从事研究工作。他在现代理论物理学和实验物理学方面都有重大贡献。他发现了泡利不相容原理的微观粒子(费米子)的量子统计、法;导出β衰变的定量理论,开创了现代基本粒子相互作用的理论;提出的热中子扩散理论是原子核反应堆的工作原理。费米因利用中子辐射发现新的放射性元素,及慢中子所引起的有关核反应,而获得1938年诺贝尔奖。

费米还领导建成世界上第一座原子核反应堆,培养了许多优秀的物理学家,杨振宁、李政道等均出自其门下。

◆新元素合成的探索者——吉奥索

吉奥索是美国核物理学家,1915年生于加利福尼亚州。在新元素的合成和鉴定方面做出了一系列的重大贡献。1946年随西博格进行锫和锎的合成和鉴定研究。他发展了48道脉冲高度分析器,为这两种元素的发现创造了条件。1952年11月在南太平洋进行了一次热核爆炸,他和同事们从尘埃中分析超锎组成时,先后发现了元素锿和镄。1955年又发现了元素钔。合成和鉴定钔后面的重元素更为困难,为此他设计了直线重离子加速器。后来他又提出了将直线重离子加速器与高能加速器相连接的概念。根据他的设想,建成了世界上第一台能加速重离子的高能加速器。到1978年为止,他作为主要研究者,又合成了102~107号元素。

◆华裔理论物理学家——杨振宁

杨振宁生于1922年,美籍,研究理论物理学,纽约州立大学石溪分校理论物理研究所所长、教授。他资助大批我国学者去美国石溪分校访问、学习。在香港捐款建立CEEC基金。

参与创立澳门何氏基金等。为我国培养一批高层次人才,并为我国高科技的发展献计献策。被授予中科院首批外籍院士,他是世界著名理论物理学家、诺贝尔物理学奖获得者。

◆荣获诺贝尔奖的华裔科学家李政道

李政道是美国物理学家,1926年生于我国上海市,原籍江苏苏州。1984年至今任哥伦比亚大学教授。1994年6月当选为首批中国科学院外籍院士。

李政道关于弱相互作用中字称不守恒定律以及其一些对称性不守恒的发现,是极为重要的划时代贡献。为此,李政道和杨振宁同获1957年诺贝尔物理学奖。

20世纪70~80年代,李政道创立了非拓扑性孤子理论及在强子模型方面的研究,具有经典意义。量子场论中的“李模型”对以后的场论和重整化研究有很大的影响。

◆中国的居里夫人——吴健雄

吴健雄(1912~1997),美国女物理学家。1975年任美国物理学会主席,1994年6月当选为首批中国科学院外籍院士。

吴健雄是美国国家科学院院士(1958)。1990年,中国科学院紫金山天文台将第2752号小行星命名为“吴健雄星”。

1956年吴健雄等用极化Coβ衰变的实验首次证明了李政道和杨振宁的理论推测,推翻了宇称守恒定律。1963年吴健雄等做了B和Nβ谱的形状的实验,有力地证明了费恩曼与盖尔曼关于矢量流守恒的理论预言。吴健雄还在β衰变领域进行了大量的工作,她的多种贡献使物理学界公认她是此方面的第一人。此外,她还在轫致辐射与核裂变、放射性与能级图、奇特原子、穆斯堡尔谱学及其在原血红蛋白中的应用等方面做出了有创造性的第一流的工作。

中国物理学之父——吴大猷

吴大猷生于1907年,是我国物理学家、教育家。研究成果遍及理论物理的许多领域,撰写了专著《多原子分子结构及其振动光谱》、《量子散射理论》、《气体与等离子体的动力学方程》,以及一套理论物理教程。指导帮助了一批学生发展自己的科学才能,使他们在科学上取得了突出的成就,为我国物理学的发展做出了重大的贡献。

◆文义变分理论的开拓者——钱伟长

钱伟长1913年生于江苏无锡,1935年毕业于清华大学。1942年在加拿大多伦多大学获博士学位。他早年与导师辛格合作研究板壳的内禀理论,开创了板壳理论的新方向,受到国际学术界的重视。他提出的“参数摄动法”,不但解决了冯·卡门于1910年提出的圆薄板大挠度变形问题,而且能广泛用于解决各种非线型偏微分方程,被前苏联学者称为“钱氏摄动法”。

钱伟长的关于广义变分原理的工作,从理论上阐明了变分原理与变分约束条件之间的关系,提出了用拉氏乘子法系统地消除变分约束条件的方法,并将广义变分原理广泛应用于固体力学、流体力学、传热学、振动、断裂力学,以及一般力学的各种理论和实践问题。近年来,他对非克希霍夫一勒夫假设厚板、厚壳问题的研究,被称为是对固体力学的新贡献。

化学领域

同类推荐
  • 宇航时代

    宇航时代

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。科学教育,是提高青少年素质的重要因素,是现代教育的核心,这不仅能使青少年获得生活和未来所需的知识与技能,更重要的是能使青少年获得科学思想、科学精神、科学态度及科学方法的熏陶和培养。科学教育,让广大青少年树立这样一个牢固的信念:科学总是在寻求、发现和了解世界的新现象,研究和掌握新规律,它是创造性的,它又是在不懈地追求真理,需要我们不断地努力奋斗。
  • 自然发现大百科(中国学生成长知识丛书)

    自然发现大百科(中国学生成长知识丛书)

    无论是浩瀚的宇宙、神奇的自然界,还是我们人类自身的生活,都充满了种种奇妙而有趣的现象。《中国学生成长知识丛书》共分为十五册,分别介绍了“ 宇宙”“动物”“植物”“人类”“科学”等内容,引导青少年不断地去探索我们生活的这个世界。
  • 寻找地下宝藏:探索世界未解之谜(科学探索的真相)

    寻找地下宝藏:探索世界未解之谜(科学探索的真相)

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,社会的进步、科技的发展、人们生活水平的不断提高,为我们读者的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,增强科学探索精神,这是科学普及的关键。
  • 我国农业企业信息技术采纳理论与实证研究

    我国农业企业信息技术采纳理论与实证研究

    本书拟以我国农业企业为对象,在对我国农业企业信息技术的应用现状调查的基础上,探讨信息技术提升农业企业核心竞争力的机制,从组织、个体、过程三个方面对我国农业企业信息技术采纳进行分析,并对农业企业信息技术应用效果评价进行研究。本书一方面将拓展企业信息化问题的研究领域,使得企业信息化的研究延伸到农业领域,充实传统行业信息化相关理论,加快农业企业信息化的实施步伐,寻求以信息化改造农业的实现途径,有利于促进国民经济和社会的信息化发展。
  • 时光机器:隐藏在时间中的科学

    时光机器:隐藏在时间中的科学

    本书除解答与时间有关的知识外,还汇集了许多与时间有关的科普知识:欧洲月球探测器“智慧1号”飞往月球所花的时间是多少?航天员在空间站上最长的飞行时间是多少?美国“阿波罗号”飞船航天员从地球到达月球所花的时间是多少?第一只碳丝白炽灯的寿命是多长?“神舟5号”载人飞船飞行时间是多少?……答案尽在书中。
热门推荐
  • 关于我们还在爱的爱情

    关于我们还在爱的爱情

    回忆就像咖啡,苦涩而又醇香,而现实就像雪花,一触即化,拿得起放不下的,究竟是什么?而放得下又舍不得的,又是什么?
  • 完蛋了!惹上霸道撒旦王子!

    完蛋了!惹上霸道撒旦王子!

    呜……难道丑小鸭就不能拥有爱情吗?为什么要这样捉弄我?可是……眼前这个帅到让人窒息的家伙……他的眼睛没有问题吧?我只不过是不小心喝醉了酒,然后不小心跟他睡了一个晚上,而且是什么事情都没有发生的那一种,他居然还要我负责??一定是吃饱饭闲着所以才拿我来开玩笑的,我绝对不会再次傻傻的被骗!但……我好象已经逃不了了,因为……完蛋了,我碰上的是一个霸道专横的——撒旦王子!
  • 最美不过初见,悔不如当初

    最美不过初见,悔不如当初

    反正,应该,大概,可能,挺好看的。。。。。。。。
  • 两世阴缘:我的夫君不是人

    两世阴缘:我的夫君不是人

    他是超于三界之外的男人,存在于历史的背后却心甘情愿为一个女人献身。她是一个普通的不能再普通的夜行者,过着自己滋润的日子却心甘情愿为了一个男人努力的变强。本就是相爱的两个人却抵不过岁月,当她忘记了他,当他深爱着她,又会发生什么样的故事呢?--情节虚构,请勿模仿
  • 吸血女王猎爱记

    吸血女王猎爱记

    看吸血家族的落魄公主如何一步一步俘获美男心
  • 皇之无情,后则虐情

    皇之无情,后则虐情

    她是一国皇后,却被凌辱,她最爱的人冷嘲热讽,她最好的朋友敬而远之,她的亲人被他灭满门。直到那天的记忆苏醒她才发现,凌辱她的就是她最爱的男人。然而这一切只为休了她娶那个最爱的女人。只因她不同意,渐渐的消了这个念头。她以为苦尽甘来,然而这只是另一场阴谋。无奈自尽,暮然回首才发现,这一切自作孽不可活。
  • 群英战山河

    群英战山河

    元朝初年,群雄四起,为刺杀号称一代枭雄“马上神箭王”的外族皇帝忽必烈,各地武林豪杰挺身而出,纷纷加入了反抗外族侵略收拾旧山河的行列。但江湖争霸,人心叵测,原本说好的刺杀计划最终演变成了一场武林内部的腥风血雨。
  • 逆天穿越者

    逆天穿越者

    穿越者叶之秋,横行异界。吊打各路妖魔鬼怪。
  • 重生末世之战世纪

    重生末世之战世纪

    一股神秘的能量将未来的沈安萧带回了末世开始的时间,一个全新的人生在面前展现!冷酷,无情,蕴含着强大的力量!这条道路究竟有多远?那股神秘的力量是什么?
  • 爱在心头绽放

    爱在心头绽放

    我除了一双伶俐的眼睛,白皙的皮肤,其它的都很普通。我觉得我是一个再正常不过的的女生了,我那么得不起眼,可我就是喜欢这样,有一个坚不可摧的友谊,和一个爱我的男友。可在你出现的那一瞬间后,我的生活从未安静过。