登陆注册
5985500000008

第8章

前面已假定每头牛每星期的吃草量为1,而每星期新长的草量为15,因此新长出的草可供15头牛吃。今要放牧21头牛,还余下21-5=6头牛要吃牧场上原有的草,这牧场上原有的草量够6头牛吃几个星期,就是21头牛吃完牧场上草的时间。72÷6=12(星期)。

也就是说,放牧21头牛,12个星期可以把牧场上的草吃光。

79

分析与解根据题意,红色铅笔分别与黄、蓝、绿、白四种颜色的铅笔搭配,有不重复的4组;黄色铅笔分别与蓝、绿、白三种颜色的铅笔搭配,有不重复的3组;蓝色铅笔分别与绿、白二种颜色的铅笔搭配,有不重复的2组;绿色铅笔与白色铅笔搭配,有不重复的1组。所以最多可以搭配成不重复的4+3+2+1=10组。

80

如果只剩4,5号,5一定会反对4,因为没过半数,4一定被杀,5得到全部宝石;

所以如果只剩3,4,5号4号一定会支持3号这样才能活下去;

而3号提出的方案一定会通过,且有利于自己,即100,0,0;

因此3号一定想除掉前面的1,2号,3肯定会反对1的方案;

2暂时忽略。如果1给4,5号每人一个宝石就比没有强,4,5号一般会支持;

所以考虑他们的心理,但是如果1死后,2也会给4、5一人一颗,这样的话,4,5就不一定支持1号了,一号只有再拿出一颗给4或5,大家再来看3号,如果1号不给他一点,他是一会同意的,所以正确答案是:

96,0,1,1,2或96,0,1,2,1

81

根据原题可以写出这样一个不定方程:

A+B+C+D=711

A×B×C×D=711

该不定方程有两个方程式组成,有四个未知数,用一般解方程方法是无法得到未知数的解的(这也是为什么这种方程被称为不定方程)。解不定方程,需要用题目中给与的或明确或隐含的条件来辅助解决。

人们不习惯于小数的运算,因此,可以把该方程转化为整数:

A+B+C+D=711

A×B×C×D=711000000

首先,要从这711000000着手,711000000等于79×5×5×5×5×5×5×3×3×2×2×2×2×2×2,ABCD必定分别是它们某几个之间相互的乘积。这里隐含的已知条件是:ABCD,均是正整数,在数值在1到711间(确切地说,ABCD每个数都不小于1,不大于708)。

注意上述的分解出的乘数中,比较突出的数字是79,它只出现一次,且最大,是破案中最明显的目标。在ABCD中,其中一个必含有79(是79的倍数)。因为上面我们说过,ABCD任何一个数,包括该含有79的数不能大于711,那么该含79的数字小于711的可能的值有6个,从大到小分别是79×3×2=474,79×5=395,79×2×2=316,79×3=237,79×2=158,及79本身。看,我们一下就把侦破的范围缩小到六个数中,该问题的答案中的含有79的那个数,就在这六个数之中。

让我们分别来看,看这六个可能的数,是否可以满足作为方程的解的要求。

第一个,看看474。711000000除掉474(79×3×2)后,剩下的数是5×5×5×5×5×5×3×2×2×2×2×2,这些数字要组合成三个数,这三个数的和要等于711-474=217。我们知道,由乘数分别组合来的几个数,在它们数字最接近时,其和最小。例如,2×2×2×2×2×2组合成两个数字时,只有在组合成2×2×2和2×2×2时,它们的和最小,为16,其它的任何组合成两数的和,都大于16(例如,2×2×2×2+2×2=20)。我们可以看到,5×5×5×5×5×5×3×2×2×2×2×2能组合成的和为最小的三个数(最为接近的三个数)是100,120,125,而它们的和是345,大于所要满足的217。因此,无论它们如何组成三个数,都只可能大于217,而不可能满足等于217的作案条件/解题条件,那么问题出在哪里呢?问题出在,79×3×2=474不可能是该题的解,即474不是ABCD中的任何一个,因为如果ABCD其中一个是474,其它数无论如何组和,都不可能满足那两个方程式。这样,我们可以排除474。

第二个,看看395(79×5)。用同样的分析,我们可以看到,711000000除去395后,所余下的数,能组成的和为最小的三个数是120,120,125,其和为365,大于所要的711-395=316。同样道理,395也可以排除在嫌疑之外。

第三个,看看316(79×2×2),当然还用同样的分析方法。哈,这次猜猜会有什么样的结果呢?呵呵,这次我们的运气实在是好,阳台上花盆不小心掉下去,正砸在楼下撬窗准备入室行窃的小偷脑袋上。711000000除去316后,余下的数组合成的和为最小的三个数为120,125,150,而120+125+150=395恰等于711-316。结果,在排除疑犯时,一不小心,歪打正着,我们抓住了正在作案的家伙,316,120,125,150恰是满足原题条件的一组解。而且,在一个数是316的情况下,除了120,125,150外,其它组合成的三个数都要大于395,因而,在一个数是316的情况下,只有这一组解。

抓住一组案犯,但是否还有其它案犯存在呢?换成数学语言是,这组解是否是唯一解呢?

六个可能的含有79的值,我们分析了三个,还剩下三个。这剩下的三个数,我们也要排查一下。

第四个,看看237(79×3)。这次,用上面的方法就不灵了,因为在下面这三个数字,被711000000除后的数值,组成三个数的最小和,可以小于711减该数的差值。这次,我们用新方法。如果四个数字中,一个是237,那么余下的三个数值之和应该是711-237=474。我们再看看711000000除以237后,得到5×5×5×5×5×5×3×2×2×2×2×2×2,注意其中的六个5。如果这三个数值都含有5,那么其和必定也可以被5整除。但474是不能被5整除的,说明至少一个数值之中不含有5。是否可能只有一个数值中含有5呢?我们看六个5相乘等于15625,远大于所要求的三个数值之和474,所以这六个5不可能完全在一个数值中。同样,一个数值中也不可能有五个5相乘(得3125),也不可能有四个5相乘(得625)。所以,可能的情况只有,在含有5的两个数值中,一个数值中有三个5,而另一个数值中也有三个5。这样,这两个数字只可能是125或125×2(不可能是125×3,因为125×3+125大于474)。于是,我们只有两组可能的值,一个是125,125,192,另一组是125,250,96。这两组值,其和都不是474,它们都不是我们的题解。排除!

第五个,看看158(79×2)。158也不能被5整除,所以我们仍然可以用上面的方法。过程就不罗嗦了,得到可能的四组值分别是125,125,288;125,250,144;250,250,72;125,375,96。同样,没有一组的和等于711-158,所以,158也是清白的。

第六个,也是最后一个,看看79。79也不能被5整除,我们可以依样画葫芦,略去过程,得到六组值,分别是:125,125,576;125,250,288;250,250,144;125,500,144;125,375,192;250,375,96。我们高兴地看到,它们也都不满足要求(三者之和要等于711-79),所以,79也是清白的。

回首看看,在六个可能的含79的值中,只有316是满足条件的,且发现了一组解,316,120,125,150,且是唯一的一组解。

不要忘了,为了计算方便,我们去掉了小数点,我们还要把小数点加回去。

最终答案:这四种商品的价格分别是:316美元,120美元,125美元,和150美元。

82

从第一下钟声响起,到敲响第6下共有5个“延时”、5个“间隔”,共计(3+1)×5=20秒。当第6下敲响后,小明要判断是否清晨6点,他一定要等到“延时3秒”和“间隔1秒”都结束后而没有第7下敲响,才能判断出确是清晨6点。因此,答案应是:

(3+1)×6=24(秒)。

83

由第一个月到第十二个月,兔子的对数分别为:一1,1,2,3,5,8,13,21,34,55,89,144。所以,满一年时可以繁殖出376对兔子。

84

也许大多数人都能回答这个问题,他们是这样回答的:让这两个青年重新赛跑一次。因为既然好青年能追上小偷,所以好青年一定跑得比小偷快。

这种回答一般还是有道理的。可是,一位同学的回答很有新意,很有独创性。

这位同学是这样回答的:

估计命题者的意图,是要让两个青年重新作一次赛跑,从而辨认出谁是小偷,谁是好青年。我认为用这种办法来破此案,极易冤枉好人,放过坏人。

因为人是有意识的动物,人的各种活动与心理状态有密切的关系。现在我们来看看小偷与追捕者的心理状态吧:作案者在作案时必然内心空虚,在心虚和恐惧的心理状态下,必定会减弱运动中枢神经的活动,使肌肉的作用不能充分发挥;另外,由于作案者在逃窜时要选择逃跑的道路,还要窥测前后左右的动向,作好“应变”的准备,因此大脑无法集中于跑步的动作。在这种情况下,作案者是跑不出正常速度的。

而追捕者的心理状态正好相反,他一股正气,情绪高昂,另外他也不必分心择路。更重要的是由于追捕者还有一个为他人、为社会做好事的动机,使他的神经系统处于非常兴奋的状态,所以在追捕时,一般都会超过平时的运动水平,跑得飞快。

但是,当以赛跑来区别好人和坏人时,两个人的心理状态都会发生根本的变化。作案者在案发时的过分紧张心理已经松驰了。另外,由:“倒打一耙”之计暂时得逞而洋洋得意,为使自己能从罪犯变成“英雄”,他必然要“拼搏”一番。这样,作案者就往往处于较佳的竞技状态,因此赛跑时会跑得比逃跑时快得多。而见义勇为的好青年,却有着一肚子窝囊,自己不顾个人安危,奋勇捉拿罪犯、反而受到怀疑,还要荒谬地通过与罪犯“平等”地赛跑来确定谁是小偷。因此,大脑皮层的活动受到抑制,影响了肌肉和关节的活动。在这种心理状态下,追捕者的赛跑速度一般就要比抓小偷时慢了。由此可见,不加心理分析,用这种简单的赛跑方法来区别好人和坏人一定是靠不住的。

所以,要区分谁是小偷,还要再找证据加以证实。

85

严格说来,0625不能算是四位数,只能看成四位密码锁上的一个号码。但是它的平方确实把这四位号码完全保留在平方数的尾部。况且,把0625也算在里面,还有一个好处,就是保持了演变的连续性:上面这些等式左边的数,按照位数从少到多,顺次是5,25,625,0625,90625,890625。

这是一个在平方运算下具有数字遗传特性的家族。从这一列数中的每个数要得到它后面相邻的数,只需在原数前面加上一个适当的数字;反过来,要得到这列数中某个数前面相邻的数,只需划去原数最前面一位的数字。只要记下这列数中有一个数是890625,把它的数字从前往后顺次一个一个地划掉,就得到前面几个数了。

下面是另外一组有遗传特性的数:

62=36,

762=5776,

3762=141376。

86答案:对于这个问题,看起来似乎很简单,就是以40人中去掉所有4的倍数,再去掉所有6的倍数,加上4和6的公倍数。若那样想就错了。这里值得提醒大家注意的是要弄清“向后转”的含义。

事实上,在40人中,报数是4的倍数的有10人,报数是6的倍数的有6人,报数既是4的倍数又是6的倍数的有3人,且两次向后转之后已面向老师了。

不妨这样思考:

第一次老师请报数为4的倍数的学生向后转,面向老师的有40-10=30人。

第二次老师请报数为6的倍数的学生向后转,因为40人中是6的倍数的有6人,这6人中有3个既是4的倍数,又是6的倍数,两次后转已面对老师,但另3个(6的倍数学生)向后转,恰是背对老师,虽然这6个人方向都发生了变化,但面向老师的人数却是没有变的。所以原题的答案应是:40-10-3+3=30人。

87

由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。

既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。

这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑。

88

许多试图解答这道趣题的人会这样对自己说:“假设我取出的第一只是红色袜子。我需要取出另一只红色袜子来和它配对,但是取出的第二只袜子可能是蓝色袜子,而且下一只,再下一只,如此取下去,可能都是蓝色袜子,直到取出抽屉中全部10只蓝色袜子。于是,再下一只肯定是红色袜子。因此答案一定是12只袜子。”

但是,这种推理忽略了一些东西。题目中并没有限定是一双红色袜子,它只要求取出两只颜色相同从而能配对的袜子。如果取出的头两只袜子不能配对,那么第三只肯定能与头两只袜子中的一只配对。因此正确的答案是3只袜子。

89

苹果是这样分的:把3个苹果各切成两半,把这6个半边苹果分给每人1块。另2个苹果每个切成3等份,这6个1/3苹果也分给每人1块。于是,每个孩子都得到了一个半边苹果和一个1/3苹果,6个孩子都平均分配到了苹果。

90

那位寡妇应分得1000元,儿子分得2000元,女儿500元。这样,法律就完全得到实现了,因为寡妇所得的恰是儿子的一半,又是女儿的两倍。

91

一只手表比另一只手表每小时快3分钟,所以经过20小时之后,它们的时差为1小时。

92

厨师起先买了16只鸡蛋,但老板又加给他2只,所以厨师总共买了18只鸡蛋。

93

同类推荐
  • 最美丽的医生

    最美丽的医生

    英国作家约翰·高尔斯华绥说,如果把灵魂剔掉,美就不能给人以安慰。这本《最美丽的医生》以励志、梦想、亲情、幸福为主题,以源于生活的故事为素材,启迪人们:心灵美是最本源的美,美是一种心灵的体操——它使我们精神正直,心地纯洁,情感和信念端正。
  • 中国古代寓言(语文新课标课外必读第五辑)

    中国古代寓言(语文新课标课外必读第五辑)

    本书所收我国古代寓言,按照思想内容,可以概括成三类。第一类是以生动活泼的比喻讲出深刻的哲理;第二类是具有“劝善惩恶”性质的;第三类是具有讽刺性的。 本书所收我国古代寓言,按照思想内容,可以概括成三类。第一类是以生动活泼的比喻讲出深刻的哲理;第二类是具有“劝善惩恶”性质的;第三类是具有讽刺性的。
  • 影视表演艺术:创作理论与实用教程

    影视表演艺术:创作理论与实用教程

    本书以影视表演创作理论、影视表演教学研究、影视表演实用教程为主要内容。将影视表演专业理论知识融会贯通到具体的教学环节和教学实例中,形成了较为系统规范的影视表演教学体系。本书用生动鲜活的教学个案稀释复杂的专业理论,还原表演课堂的原貌,通过具体的、可见的环节展现教学理念,具有很强的可读性和操作性。
  • 环境与资源法学

    环境与资源法学

    是作为法学核心课程“ 环境与资源保护法学”的配套教材?写而成的。全书根据 环境资源法学最新的理论成果,结合我国环境立法的最新进展,系统阐述了本学科的基础知识与基本理论。
  • 中学生必读经典名著赏析

    中学生必读经典名著赏析

    本书集中介绍了适合中学生阅读的名著经典,同时对这些经典进行了解读,对中学生的阅读量及对文学名著的理解有辅助作用。
热门推荐
  • 种树丹神

    种树丹神

    炼丹师?不,我是个种树的灵植师?不,我是个种树的娘的,凡人啊火球术,次元斩,藤蔓术,我娘都不是凡人,我能是凡人,还有,最讨厌骂娘的
  • 再世之书

    再世之书

    联邦X3XX年,地球上的资源已经无法提供现有人类生存下去,联邦政府莫名其妙的接收到宙外的信息,远距离航空开始。为了节约资源,大部分人都将进入冷藏舱,在冷藏期间进入新的世界去冒险。新的世界即为再世。一个普通的战士,莫名其妙成为了联邦的敌人,只想简单的在游戏里玩乐,却只能站到人类的对立面。世界让我毁灭,我就踩在世界之巅。
  • 未来游戏:小裁缝惹不得

    未来游戏:小裁缝惹不得

    前世不慎,栽在了家族纷争;今生重来,锦绣表示人生苦短,及时行乐。网游什么的,简直不要太对胃口~
  • 相思谋:妃常难娶

    相思谋:妃常难娶

    某日某王府张灯结彩,婚礼进行时,突然不知从哪冒出来一个小孩,对着新郎道:“爹爹,今天您的大婚之喜,娘亲让我来还一样东西。”说完提着手中的玉佩在新郎面前晃悠。此话一出,一府宾客哗然,然当大家看清这小孩与新郎如一个模子刻出来的面容时,顿时石化。此时某屋顶,一个绝色女子不耐烦的声音响起:“儿子,事情办完了我们走,别在那磨矶,耽误时间。”新郎一看屋顶上的女子,当下怒火攻心,扔下新娘就往女子所在的方向扑去,吼道:“女人,你给本王站住。”一场爱与被爱的追逐正式开始、、、、、、、
  • 完美乱世神初篇

    完美乱世神初篇

    中原大地,传说不断。再回中原,楚光扬镇压诸敌,达到举世无敌之境。苍天不公,夺走楚光扬最爱的女子和最亲的人,为了复活她们,楚光扬将踏上一条不归路。
  • 遗失的鸢尾

    遗失的鸢尾

    她活了二十年,曾以为只要有奶奶真心待自己便已足够,有小曦默默陪伴便已知足,却不知这是一个设下了二十年的阴谋,巨大的阴谋。二十年了自己才后知后觉,本就缺失的童年,造就了莫夏如今的隐忍,一步一步亲手揭开那惨不忍睹的真相……因为执着她亲手残忍了他们的爱情,因为仇恨她一点一点变得嗜血冷情,而心底的柔弱终有一片安静,只为等待一人……她很认真的说过:有些东西一旦失去了,便再也挽不回了,比如奶奶,比如陆宇。有经些东西一旦坚持了,那便是用命去维护。比如自己要的真相,比如落珉曦。绝世容颜的她如鸢尾花语般从小受人赞赏却又有着自己的宿命。而鲜为人知却是它象征着绝望的爱情,陈莫夏终将遗失……
  • 网游之夏沫战堂

    网游之夏沫战堂

    虚拟实镜网游是网游玩家们时刻期待的游戏,每时每刻都在期待,但是世界的科技没有突破,在2020年的某一天网游突破了,虚拟实镜不在是梦想。他,是夏沫中的战皇,不败神话。在14年兄弟们竞相离开,只是因为生活,夏沫战堂就此解散。2020年实镜虚拟突破,进入《炫斗》世界。这里可以展现不一样的神话,金钱可以双向互通。再次集结,为了那天下第一盟的称号,也为了那永不消散的兄弟。《炫斗》世界,竞技网游,寻找我们的热血,寻找我们的兄弟。这,是我们的世界。第一次写网游,希望没人吐槽。谢谢,小树再次谢谢各位嘴下留情
  • 巅峰传承

    巅峰传承

    心的传承不知道是另一个开始?还是另一个的轮回?亦不知道传承在何方?又走向何方?经历心的历程,是走向巅峰还是再一次的轮回?没有人知道,路究竟在哪?已没有人知道!大道难道就是尽头?也没有人知道,请追随一个少年,笑看走向大道的路程。
  • 韩娱之第十名少女

    韩娱之第十名少女

    主角成为少女时代的第十名成员,无穿越无重生,金手指所开有限。考据党数据党退散。不喜请点叉。轻松向,非爽文。主要讲的是主角在和少女时代九只一起成长的同时收获来自于她们的友情、亲情的故事。因为提纲修改的原因,所以原本定的百合向还是可能会改成BG向……CP不定……可能是胡小白。
  • 龙炎天下

    龙炎天下

    千年前龙族灭亡!龙族吧一切寄托在了龙太子龙泉身上!称霸幻境!时光之力!阴谋中的阴谋!······我恨!我也爱!恨她接近我居然是为了实施那件计划。爱他为了我付出了生命!!!端木家,我龙族与你势不两立!~~~~~龙皇--龙泉之痛