登陆注册
5978000000004

第4章

两个男孩各骑一辆自行车,从相距20千米的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。

如果每辆自行车都以每小时10千米的高速前进,苍蝇以每小时15千米的高速飞行,那么,苍蝇总共飞行了多少千米?

每辆自行车运动的速度是每小时10千米,两者将在1小时后相遇于20千米距离的中点。苍蝇飞行的速度是每小时15千米,因此在1小时中,它总共飞行了15千米。

许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。

据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼提出这个问题,他思索片刻便给出正确的答案。提问者显得有点沮丧,他解释说,很多数学家总忽略简单方法,而去采用无穷级数求和的复杂方法。

冯·诺伊曼脸上露出惊奇的神色。“可是,我用的正是无穷级数求和的方法”,他解释道。

2.往返旅行

当我们驾驶汽车旅行的时候,汽车在不同的时刻当然会以不同的速度行驶。如果把全部距离除以驾驶汽车的全部时间,所得到的结果叫做这次旅行的平均速度。

史密斯先生计划驾驶汽车从芝加哥去底特律,然后返回。他希望整个往返旅行的平均速度为每小时60千米。在抵达底特律的时候,他发现他的平均速度只达到每小时30千米。

为了把往返旅行的平均速度提高到每小时60千米,史密斯在返回时的平均速度必须是每小时多少千米呢?

求解这道令人困惑的小小难题,并不需要知道芝加哥与底特律之间的距离。

在抵达底特律的时候,史密斯已经走过了一定的距离,这花去了他一定的时间。如果他要把他的平均速度翻一番,他应该在同样的时间中走过上述距离的两倍。很明显,要做到这一点,他必须不花任何时间便回到芝加哥。这是不可能的,因此史密斯根本没有办法把他的平均速度提高到每小时60千米。无论他返回时的速度有多快,整个旅行的平均速度肯定要低于每小时60千米。

如果我们为史密斯的旅行假设一个距离,事情便会容易理解一些。比如说,假设往返旅程各为30千米。由于他的平均速度为每小时30千米,他将用1小时的时间完成前一半的旅行。他希望往返旅行的平均速度为每小时60千米,这意味着他必须在1小时中完成整个60千米的旅程。可是,他已经把1小时的时间全都用了。无论他返回时速度有多快,他所用的时间全都用了。无论他返回时速度有多快,他所用的时间将多于1小时,因此他必定要用多于1小时的时间完成60千米的旅程,这使得他的平均速度低于每小时60千米。

升官题

传说唐代尚书杨损,廉洁奉公,任人唯贤。有一次,要在两名小吏中提升一人,主管提升工作的官员感到很难决断,便请示杨损。杨损认为,作为一个官员,不仅要有高尚的品德,还要有一定的文化水平。于是,他说:“一个官员应具备的一大技能是速算。让我出题来考考他们,谁算得快就提升谁。”杨损出了一道题:

“有人在林中散步,无意中听到几个强盗在商讨如何分赃。他们说,如果每人分6匹布,则余5匹;每人分7匹布,则缺少8匹。试问共有几个强盗几匹布?”两个小吏听过题目后,便用筹算解联立一次方程组。后来,先得出正确结果的小吏果真升了官,大家心服口服。

这个故事反映出我国古代人民对于解联立一次方程组的熟练程度。事实上,在2000多年前的《九章算术》中,已系统地叙述了联立一次方程组的解法,这是中国古代数学的杰出贡献之一。

《九章算术》是我国至今有传本的一部经典数学着作,内容极为丰富,它几乎集中了过去和当时的全部数学知识,将246个问题分为九章,所以叫做《九章算术》。

《九章算述》不是出自某一个人的手笔,不是一个时代的作品。它是经过历代名家的修订和增补,才逐渐成为定本的。它成书于何时,目前学术界尚无统一结论,据推测起码在公元1世纪之前。《九章算术》对我国以及一些外国的数学发展有很大影响,直到16世纪我国的数学着作大都还是受它的体例影响。

一元一次方程问题在古埃及时已经出现。巴比伦人已经知道某些特殊的二次、三次方程的解法,例如:两个正方形面积之和是1000,其中一个边长是另一个边长的23少10,问各长多少?这相当于解联立方程x2+y2=1000,y=12x-10。

当时实际的解只是由观察某些简单的数字关系而得到答案。

《九章算术》的第8章“方程”,给出了联立一次方程组的普遍解法,并且使用了负数,这在数学史上具有非常重要的意义。

我国古代是用算筹来运算的,未知数不用符号表示,只是将各个系数用算筹依次布列成方阵的形式。“程”是变量的总名,也有计量、考核、程式的意思。“方程”的名称,就来源于此。

《九章算术》第8章的第1题为:

“今有上禾三秉、中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?

“禾”指黍米,一“秉”即一捆,“上禾三秉,中禾二秉,下禾一秉,实三十九斗”就是说:三捆上等黍米,两捆中等黍米,一捆下等黍米,一共可打出黍米谷39斗。

设上、中、下禾,每捆各出谷x、y、z斗,则用现代的方程来表达,可得3x+2y+z=39,2x+3y+z=34,x+2y+3z=26。

在《九章算术》中列出的方程形式为:

在方程中只能看到系数,看不到未知数,文字采用直排,而且阅读时是从右到左的。由于这种方程中,未知数不用符号表示出来,实际上就是现代的分离系数法。书中给出的解法是联立一次方程组的普遍解法。除了符号、名词和计算工具不同外,和现代使用的消元法实质一样。

(第8章)中还有四元及五元的方程组,也是用类似的方法来解的。

在国外,线性方程组的完整解法,直到17世纪末才由微积分的发明人莱布尼茨着手拟定。可见,从时间上来说,《九章算术》的解法实是在世界数学史上一大光辉成就,值得中国人自豪!

自从《九章算术》提出了多元一次联立方程后,多少世纪没有显着的进步。贾宪、秦九韶、李治等人曾研究过一元高次方程。元朝杰出数学家朱世杰集前人之大成,建立了四元高次方程组理论,并称为“四元术”。他用天元、地元、人元、物元表示四个未知数,相当于现在的x、y、z、u。朱世芝的《四元玉鉴》一书,举例说明了一元方程、二元方程、三元方程、四元方程的布列方法和解法。其中有的例题相当复杂,数字惊人的庞大,不但过去从未有过,就是今天也很少见。可见朱世杰已经非常熟练地掌握了多元高次方程组的解法。

在外国,多元方程组虽然也偶然在古代的民族中出现过,例如巴比伦人借助数表处理过某种二元二次方程组,但较系统地研究却迟至16世纪,1559年,法国人彪特才开始用不同的字母A,B,C……来表示不同的未知数。而过去不同未知数用同一符号来表示,以致含混不清。正式讨论多元高次方程组已到18世纪,由探究高次代数曲线的交点个数而引起。1764年,法国人培祖提出用消去法的解法,这已在朱世杰之后四五百年了。

数学之源

数学最初是从结绳记事开始的。大约在三百万年前,人类还处于茹毛饮血的原始时代,以采集野果、围猎野兽为生。这种活动常常是集体进行的,所得的“产品”也平均分配。这样,古人便渐渐产生了数量的概念。他们学会了在捕获一头野兽后用一块石子、一根木条来代表;或者用在绳子上打结的方法来记事、记数。这样,在原始社会人们的眼光中,一个绳结就代表一头野兽,两个结代表两头……或者一个大结代表一头大兽,一个小结代表一头小兽……数量的观念就是在这些过程中逐渐发展起来的。随着捕获手段的提高,所获的野兽越多,绳子的结越多,需要的数目也越大。

在距今大约五六千年以前,沿非洲的尼罗河出现了一个伟大的文明社会——埃及。埃及人较早地学会了农业生产。尼罗河每年7月定期泛滥,淹没大片农地,11月洪水逐渐退落。埃及人通过长期观察,注意到当天狼星和太阳同时出没的时候,正是洪水将至的预兆。还发现,这种现象大约365天重复一次。这样,埃及人就选择在洪水泛滥之后留下的肥沃淤泥上下种,待6月洪水来临之前收割,以获得好的收成。这是通过天文观测进行农业生产的结果其中也包含了数学知识的应用。另一方面,古埃及的农业制度,是把同样大小的正方形土地分配给每一个人的,租用的人每年把他的收成提取一部分给土地所有者——国王。如果洪水冲毁了他们所分得的土地,他可以向国王报告,国王便派人前来调查并测量损失的那一部分,这样,他交的租就会相应减少。这种对于土地的测量,导致了几何学的诞生。实际上,几何学的原意就是“土地测量”。

数学正是从打结记数和土地测量开始的。

与埃及同时,世界上还有几个同样伟大的文明社会,如亚洲西部的巴比伦,南部的印度和东部的中国,它们分别创造了自己的文字。同时也产生了各自的记数法和最初的数学知识。在距今大约两千多年以前生活在欧洲东南部的希腊人,继承了这些数学知识,并将数学发展成为一门系统的理论科学:古希腊文明被毁灭后,阿拉伯人保存和继承了他们的文化,后来又传回欧洲,使得数学重新繁荣起来,并最终导致了近代数学的创立。

十进制和二进制的故乡

中国是世界文明古国之一,中国数学在人类文化发展的初期,远远领先于巴比伦和埃及。

中国早在五六千年前,就有了数学符号,到三千多年前的商朝,刻在甲骨或陶器上的数字,已十分常见。这时,自然数计数都采用了十进位制。甲骨文中就有从一到十到百、千、万的十三个记数单位。

在运算过程中用的是算筹。算筹就是一些用木、竹制作的匀称的小棍,算等纵横布置,就可以表示任何一个自然数。据考证,至少在公元前8世纪到前5世纪的春秋时代,我国算筹记法已经完备,而印度正式使用0这一符号是在公元876年以后。只有表示0的方法使用后,十进制才算完备。因此,中国是名副其实的十进制故乡。

中国还是现代电子计算机二进位制的发展地。二进位制中,只有0和1两个符号,0仍表示零,1仍表示“一”。但“二”就没有单独数码代表,因此得“逢二进一”,这样便可以表示一切自然数。

例如:

自然数一二三四五六七八九十……

十进制12345678910

二进制11011100101110111100010011010

规矩和直尺圆规

规和矩发明于中国,是古人用来测量、画圆形和方形的两种工具。“规”就是画圆的圆规;“矩”就是折成直角的曲尺,尺上有刻度。古人说“不以规矩,不能成方圆”,就是这个意思。规矩发明的确切年代已无法查清,但在公元前15世纪的甲骨文中,已有规、矩二字了。汉朝着名史学家司马迁着的《史记》中有这样的记载:夏禹治水的时候,是“左准绳,右规矩”。这意思是说,夏禹是左手拿着水准绳,右手拿规和矩进行测量,规划出治水方案的。说明在夏禹治水的年代(约公元前2O00年)就有了规和矩这两种几何工具了。

规矩的使用,对于我国古代几何学的发展,有着很重要的意义。周代数学家商高曾对“用矩之道”作过理论总结:“平矩以正绳,堰矩以望高,覆矩以测深,卧矩以知远。”这一段话,精炼地概括了矩的广泛而灵活的用途。“平矩以正绳”,是指把矩的一边放置水平,另一边靠在一条竖立的线上,可以判定绳子是否铅直。“堰矩以望高”,是指把矩的一边仰着另一边放平,可以测量高度。“覆矩以测深”,是把上述测高的矩颠倒过来,就能测量深度。“卧矩以知远”,是指上述测高的矩平躺在地面上,就可以测出远处两地间的距离。

古希腊人研究几何问题时,一般用直尺和圆规这两种工具。这种直尺没有刻度,只能画直线。希腊人作图只能从最基本的工具——直尺和圆规开始,完成尽可能多的几何图形。由此产生了两方面的问题:一是能否用直尺圆规画出这个图形;二是如能画出,怎么画。在这方面,最有名的是所谓直尺圆规作图的三大问题:三等分任意角、倍立方和化圆为方。对用直尺圆规作图的研究,导致了许多数学定理的发现。

最早的数学表

上中学数学课,计算时常常要用一些数学表:平方表、对数表、三角函数表……。有了数学表,就不用从头计算,而可以直接查表得到结果,大大方便了计算。这些数学表,是在长期的逐步积累中发展、完善的。

在靠近幼发拉底河的古代巴比伦的庙宇图书馆遗址,曾挖掘出大量的泥土板,上面用楔形文字刻着乘法表、加法表、平方表、倒数表和平方根表等。这些都是人类最古老的数学表,古巴比伦人就是用它们作为简化计算的工具的。

中国历史上最早的数学表,是“乘法九九表”。据说春秋时代霸主之一齐桓公招聘贤才,但无人应聘。一天,有一个人前来求见,齐桓公说:“你有什么本领?”来者说:“我会九九歌。”齐桓公嘲笑他:“会背九九歌也算本领吗?”那人回答:“背九九歌确实算不上什么大本领,但是如果您对我也能以礼相待,还怕比我高明的贤士不来应聘吗?”齐桓公觉得有理,就款待了他,后来果然招到很多能人。

这里的九九歌,就是现代的乘法九九表。这个故事也说明,九九歌在我国很早就已经普遍被人掌握了。在我国敦煌等地出土的西汉竹简(竹简是我国古代人用来写字的竹片)上,都记载着不完整的“九九表”。例如,敦煌的汉简中的“九九表”共十六句,即是:

九九八十一八八六十四五七卅五二三而六

八九七十二七八五十六四七廿八五五廿五二二而四

七九六十三六八八三七廿一四五廿

五八三五十五

今天,人们可以用电子计算器来代替许多数学表,但在很多情况下,人们还在使用九九表,因为它方便易学,也很实用。

分数的妙用

有一位阿拉伯老人,生前养有11匹马,他去世前立下遗嘱:大儿子、二儿子、小儿子分别继承遗产的12、14、16。儿子们想来想去没法分:他们所得到的都不是整数,即分为112、114、116,总不能把一匹马割成几块来分吧?聪明的邻居牵来自己的1匹马,对他们说:“你们看,现在有12匹马了,老大得12匹的12就是6匹,老二得了12匹的14就是3匹,老三得了12匹的16就是2匹,还剩一匹我照旧牵回家去。”这样把难分的问题解决了。

分数起源于“分”。在原始社会,人们集体劳动,要平均分配果实和猎物,逐渐有了分数的概念。以后在土地计算、土木建筑、水利工程中,当所用的长度单位不能量尽所量线段时,便产生了分数。

同类推荐
  • 头脑充电大本营(中小学生奥林匹克集训与选拔)

    头脑充电大本营(中小学生奥林匹克集训与选拔)

    “中小学生奥林匹克集训与选拔”丛书旨在通过向青少年提供集知识性和趣味性于一体的科学文化知识,激发他们学习科学和热爱科学的积极性,引导他们拓宽视野,不断创新,最终达到提升综合性素质的目的。其中涉及到青少年必须知道的许多知识领域,具有很强的系统性、实用性和现代性,是青少年学习的最佳读本。
  • 2010年高考满分作文阅卷第一现场

    2010年高考满分作文阅卷第一现场

    收录2010年全国18套高考作文题,精选近200篇考场佳作,一网打尽高考作文的方方面面。力邀全国近百位阅卷专家精心打造,提供最专业的高考作文优化方案。揭秘2010年高考作文命题特点,对不同层次的作文进行零距离解读,是考生冲刺2011年高考作文的第一武器。
  • 中国民间故事(语文新课标课外必读第四辑)

    中国民间故事(语文新课标课外必读第四辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 大学生艺术素养

    大学生艺术素养

    本书为大学生艺术素养教育类教材,涵盖了美术、音乐、舞蹈、戏剧及其他艺术等五个方面的内容。本书从艺术学科的整体性出发,理论与作品结合,图文并茂,以直观的图例诠释艺术形象;立足于崇美扬善、怡情悦性和笃学尚行的人文素养的养成。
  • 中华美德:舍身求义

    中华美德:舍身求义

    “生我所欲也,义亦我所欲也,二者不可得兼,舍生而取义者也”。早在几千年前,伟大的思想家庄子就给后人阐述了舍生求义的人性美德。中华民族的传统文化源远流长,博大精深,是中华民族的根和魂,其精髓就是中华民族传统美德和人格修养。在中华民族悠久的历史长河中,高尚的民族情感、崇高的民族气节、良好的民族礼仪构成了中华传统美德和人格修养的奠基石,充分体现了中华民族在处理人与自然、人与社会、人与他人之间关系的基本价值观。
热门推荐
  • 导游妹妹跟我走

    导游妹妹跟我走

    Boss的第一次跟团游就被破坏了!本着谁破坏谁负责的原则,凌Boss就此缠上了导游小妹赵思乐;于赵小妹来说,明明是毫不相干甚至厌恶的人,怎么就对他生出前所未有的信赖,这让她很不安啊。邻家阿妹跟顶层Boss的欢乐过招,啊喂,一不留神就掉坑了。文风整体活泼欢脱,偶有小虐调剂调剂~~~
  • 上仙札记

    上仙札记

    当年她看着她的仙尊未婚夫寻一女子三界六道,一笑置之。浮生镜一撇才知道自己果真是可怜到了可笑。她这辈子在情这一字栽倒了两次,偏偏两次都是他宫湮。后来是他放不下时,她却笑道:“师尊,如今我有父母疼爱,兄长姊妹也都极好,对你可以尊敬,但永远不可能是唯一”桃花繁复,她依旧是眉目美丽若画,却对另一人笑靥如花:“感谢上仙厚爱,染月无以为报,唯有余生不负。”他怎能放手?她怎能回头?
  • 穿越之鬼王爹爹不好惹

    穿越之鬼王爹爹不好惹

    二货都市打工妹,雨天躲道树下避雨,一道雷电闪过,神一般的穿越到了不存在的异界大陆.醒来的时候第一句话便是"雨天该带避雷针的".从此某二货携包子闯江湖,人缘爆棚,前有光明正大追求自己的美男公子,后有人格分裂多金的鬼王,异界生活多逍遥,且看二货玩转异界.
  • 王源,我不喜欢这世界,只喜欢你

    王源,我不喜欢这世界,只喜欢你

    本文主写王源,还有小凯,千千。也会穿插一些exo的情节,大大既是行星饭,也是四叶草。由衷的希望两家粉丝和平。不要再对骂了,不要在撕了。
  • 教子从此不累:资深心理教育专家的轻松教子方案

    教子从此不累:资深心理教育专家的轻松教子方案

    本书将引导父母学习如何在与孩子的谈笑互动间,化解所有的成长难题。帮助父母学习育成智慧,享受育成快乐,引导孩子学习成长智慧。
  • 安暖相之

    安暖相之

    总有那么一个人,即使相隔天涯海角也会与你相遇,即使讨厌回想与他的点滴,也会在梦中盘旋不息,即使矛盾重重、风波不断,也不想与他分离片刻,总有那么一个人,而他就是全世界只属于你的唯一。
  • 潜莽变龙

    潜莽变龙

    那些再普通不过的年轻人,那些原本注定要默默无闻一生的年轻人就在这乱世抓住了上天给予的机会,缔造了一个神州历史上前所未有的伟大王朝,或许这才是上天本来就为他们安排好的命运,一个天生注定的乱世英杰的不凡人生。
  • 皖院:璃领重生

    皖院:璃领重生

    “我说,你能不能有点女孩儿样,尽管你是王,可是能不能有点小家碧玉,真不知道你家那位怎么受得了的!”“我说,你能不能找个媳妇啊,别整天赖我这儿,我虽是个王,但是我是有家室的,你!没有!哼!”
  • 预言之世

    预言之世

    一个被预言的时代,一个个被预言的人接连的出现,远古的谜题逐渐浮出水面,到底谁会是这场战争的幸运儿呢......
  • 武道觉醒之路

    武道觉醒之路

    在这武道式微的世界,岳之轩穿梭于各个世界,走上武道之路,