登陆注册
5976100000011

第11章 1曹冲6岁称象(10)

正五边形的每一个内角为108°,108°不能整除360°,所以正五边形不能覆盖平面,不难看出,超出六边的正多边形的每一个内角大于120°,小于180°,都不能整除360°,因此,都不可能覆盖平面。这样看来,能覆盖平面的正多边形只有正方形、正三角形、正六边形三种。

现在,我们来看看不规则的多边形能不能覆盖平面。事实上,任何不规则的三角形和四边形都可以覆盖一个平面。

那么,其它怎样的凸多边形才能覆盖平面呢?1918年,法兰克福大学一位研究生卡尔·莱因哈特曾研究过这个问题。后来发表了论文,确定五种可以拼成平面的凸多边形。例如,他提出如果五边形ABCDE的各边分别为a、b、c、d、e,且c、e两边所对的角C、E满足C+E=180°,又a=C,那么这个五边形就能覆盖平面。

1975年,美国人马丁·加德纳在《科学美国人》这本杂志上开辟了关于镶嵌图案的数学游戏专栏,许多数学家和业余数学爱好者都参加了讨论。其中有一位名叫玛乔里·赖斯的家庭妇女是最热情的参予者之一。

赖斯是五个孩子的妈妈,1939年中学毕业前只学过一点简单的数学,没有受过正规的数学专业教育。她除了研究正多边形的拼镶问题以外,还研究了一般五边形。她独立地发现了一种五边形,并且向加德纳报告了这一发现:“我认为两条边长为黄金分割的一种封闭五边形可以构成令人满意的布局。”加德纳充分肯定了赖斯的研究成果,并把她介绍给一位对数学与艺术的和谐具有职业兴趣的数学家多里斯·沙特斯奈德。在沙特斯奈德的鼓励下,赖斯又发现了解决拼镶问题的另外几种五边形,而使这样的五边形达到13种。

赖斯的家务很忙,但这没有影响她研究的热情。她对人说:“在繁忙的圣诞节,家务占踞了我大量的时间,但只要一有空,我便去研究拼镶问题。没人时,我就在厨房灶台上画起图案来。一有人来,我就急忙地把图案盖上。因为我不愿意让别人知道我在研究什么。”

62找零钱

一家手杖店来了一个顾客,买了30元一根的手杖。他拿出一张50元的票子,要求找钱。

店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头。

顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的。店主不得已向邻居赔偿了50元。随后出门去追那个顾客,并把他抓住说:“你这个骗子,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失。”

这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元。”

请你计算一下,手杖店真正的损失是多少?这里要补充一下,手杖的成本是20元。如果这个顾客行骗成功,那么共骗得了多少钱?

63唐僧取经

一天,唐僧想考考三个徒弟的数学水平,于是他把徒弟们叫到面前,说:“徒儿们,现在我在地上写3个数,你们谁能准确读出来,我就把真经传给他。”

唐僧首先写出:23456。猪八戒迫不及待地说:“这个读二三四五六!”唐僧摇了摇头,说:“八戒,多位数的读法是有规律的。每个数字从右到左依次为个位、十位、百位、千位和万位。只要从左到右把每个数字读出来,并在后面加上万、千、百、十就可以了,只是需要注意,最后一个数字不要读‘个’。所以,23456读作二万三千四百五十六。”

唐僧又写出:130567。孙悟空马上说:“这太容易了,读作十三万零千五百六十七。”唐僧又摇了摇头,说:“遇到0,要特别注意,当一串数中间有0时,只要读零就可以了,它后面的数位不要读出来。所以这个数应该读作十三万零五百六十七。”

第三个数是120034。沙和尚想了想说:“应该读作十二万零零三十四。”唐僧叹了口气,说:“如果一串数中有连续的几个零,读一个就可以了。所以这个数要读成十二万零三十四。徒儿们,你们的数学都学得不太好,还得继续努力呀,真经暂时不能传给你们呀!”

64数字兄弟

有一天,数字0和5俩兄弟一起出去玩。

0弟弟说:“咱们一起拍张合影吧?”

5哥哥说:“好啊。”

“+”号听到了,说:“我来帮你们拍照!”

于是,它们便忙了起来,“+”号把它们按不同的位置拍了两张,就送到“=”号彩印冲洗店。

照片洗出来后,“=”号伸手向0和5要钱,它们俩呆呆地望着对方,自言自语说给多少呢?

“=”号得意的说:“50呗,你看你们俩“5”在前,“0”在后站在一起不就是50吗?”

0和5想了想说:“那要“0”在前,“5”在后站在一起是05,那给多少钱啊?”

这时“+”号走了过来,“=”号老弟你错了,任何数和0相加都等于任何数,不存在位置关系,所以5+0、0+5都等于5,你应该收它们5元钱才对呀!”

小朋友,你明白了吗?

65“摸球游戏”与概率论

大约十年前,在北京西直门立交桥附近,曾有一个摆摊摸球的人。当时围观的人们觉得很新鲜,曾有很多人参与摸球。现在看来,这不过是一个小型的赌博游戏罢了。

这个游戏的规则很简单:他先摆出了12个台球一般大小的小球,其中有6个红色球和6个白色球。当着观众的面,他把所有12个色球装进一个普通的布袋中,然后怂恿大家来摸。怎么个摸法呢?就是从这个装有12个球的布袋中,随便摸出6个球来,看看其中有几个是红球,有几个是白球。当然,摸球者只能把手伸进袋口中把球一个一个地“掏出来”,而不能打开袋口看着摸。

这位摆摊的人,还设立了各种情况下的奖励方案,大致是这样的:如果谁有幸摸出了“6个红球”或者“6个白球”,那么摸者可以得到3元钱的奖励;如果摸出的是“5红1白”或者“5白1红”,那么摸者可以得到2元钱的奖励;如果摸出的是“4红2白”或者“4白2红”,那么摸者可以得到1元钱的奖励;但如果摸出的是“3红3白”,对不起,摸球者必须付给摆摊者3元。

当时的围观者甚众。乍一看来,在可能出现的所有7种情况中,竟然有6种可以得到奖励,只有唯一1种情况要“挨罚”,很多人便欣然参与。

奇怪的是,“3红3白”的情况特别的多,也许摸个一、两次,能撞个大运,摸个“4红2白”或者“4白2红”,赢下寥寥几元钱,但如果连摸五次以上,几乎是必“赔”的。一天下来,最为得意的当然是那个摆摊者。

有些赔钱的人肯定会有这种疑问:“为什么摸出来的6个球,总是3红3白呢?是不是这个摆摊的人有点特异功能,施了魔法呢?”

当然不是。这是数学中的“概率”所左右的结果。

大家都知道,根据排列组合的知识,从12个球中摸出6个球,总的方法数为:

其中“6红”或者“6白”的情况,都仅有唯一的1种,按照概率论计算,就是1/924的出现概率,真是太低了,在概率论中可以算作“实际上不可能发生”的小概率事件。

容易计算出“5红1白”或者“5白1红”的情况各是:

两种情况加起来就是72种,也就是出现总概率为72/924=6/77,还不到1/11,也够低的。所以这两种情况也难得出现。

出现“4红2白”或者“4白2红”的情况各是:

两种情况加起来就是450种,也就是出现总概率为450/924=75/154,将近1/2,也就是有一半的可能性。不过这两种情况每次都只能赢回1元钱。

最后我们来看看“3红3白”的情况:

所以,摸到“3红3白”的概率,就是400/924=100/231,虽然比上面那两种情况的可能性稍低,但也是将近一半的可能性。尤其一旦摸到“3红3白”,一次就会损失掉3元钱。

根据上面的分析,我们可以得到如下结论:最有可能出现的三种情况是“3红3白”“4红2白”和“4白2红”,而且出现“3红3白”的概率接近1/2,出现“4红2白”和“4白2红”的概率都接近1/4。

也就是说,一般来讲,如果志愿者摸了四回,往往其中的两回都是“3红3白”(共赔6元),另外各有一次是“4红2白”和“4白2红”(共赚2元)。算下总帐,4次摸球的结果,一般要赔进4元钱。

看来,参与摸球的人多半是会赔本的,而且摸的次数越多,赔出的钱也就越多。

看来,这位摆摊者巧妙地利用了概率论,成为不变的赢家。以后再遇到这种人,大家可千万不要上当啊!

66对数的创立

对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(1550-1617年)男爵。

在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。

当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。

那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子:

0、1、2、3、4、5、6、7、8、9、10、11、12、13、14……1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384……这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。

比如,计算64256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64256=16384。

纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?

经过多年的探索,纳皮尔男爵于1614年出版了他的名着《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。

所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的着作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国着名的数学家、天文学家拉普拉斯(PierreSimonLaplace,1749-1827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。

67大战食数兽

一天数学王国突然闯进一个三条腿怪兽,吓得数字公民纷纷逃走。怪兽张开血盆大口,一口吞下数24。接着它又吞吃了另一个数44。奇怪的是,怪兽却没有吃数5。

数学王国最高统治者零国王连夜和数1大臣商量对策。数14首先迎战怪兽。怪兽力大无比,数14被摔昏过去。数6和数35举起弓箭,连连发射,可是一点也伤不着怪兽。数100挺枪冲向怪兽。怪兽张开大嘴,一口吃了数100,吓得数6、数35扶起数14赶紧逃窜。

第二天,聪明的数1大臣想出了一个法子,派数60去迎战怪兽。数60见怪兽冲了过来倒地一滚,变成了数2和数30,因为230=60。怪兽一见掉头跑了。数60连忙又变成数12和数5,因为125=60。怪兽见状掉转头又冲了过来。这时侦探数7回来报告说:“怪兽名叫食数兽。为了长出第4条腿,它专吃含因数4的数。”

零国王和数1大臣连夜商量对策,第二天,零国王亲自出战与怪兽大战起来。

怪兽吞下零国王,倒地就死了。不一会儿,零国王领着几个数字公民全走了出来。

原来零国王钻进怪兽肚子里,和这三个数作了连乘,结果都变成了0,怪兽就饿死了。众人听了,齐声称赞零国王既勇敢又聪明。

同类推荐
  • 怎样对学生进行创造素质教育

    怎样对学生进行创造素质教育

    教育应以提高学生素养为目标,为学生的终身发展打下基础。本书以培养中小学生创造素养为宗旨并依据新课程标准编写。创造才能是各种能力的集中和最有价值的表现,人类社会文明都是创造出来的,所以只有具备创造才能的人,才是最有用的人才。一切发达国家都非常重视青少年创造才能的培养。没有创造,便没有发展。创造素质教育是教育的重中之重。培养创造才能要从教育抓起,要从小做起。
  • 小学生英文幽默故事:林克妈妈的自然拼音快乐读本

    小学生英文幽默故事:林克妈妈的自然拼音快乐读本

    本通过阅读这些故事,孩子可以巩固自然拼音,扩大词汇量,提高阅读能力。60个故事共分为10个单元,每个单元后面都配有游戏题,提供给孩子和妈妈共同参与。
  • 谁把儿童当被告:去教育化的教育生活

    谁把儿童当被告:去教育化的教育生活

    早在18世纪,法国的哲人卢梭曾敏锐地指出:“我们不懂得儿童!”的确,历经几个世纪之后,卢梭的警告依然在耳边回响。我们每个人都有过儿童的经历,却依然不能理解身下的儿童。虽然,儿童教育体系不断在健全当中,但又很难适应儿童健全的成长。或许陶行知先生对教育的经验阐释,使我们应该回到教育原有的起点:生活即教育。陶行知说:“教育的根本意义是生活之变化,生活无时不变,即生活无时不含有教育的意义。”卢梭的教育问题在陶行知的论述中得到了很好的解答:生活的变化使我们自身的教育经验不足以懂得儿童,而懂得儿童的基础则首先要理解生活当中的变化。
  • 逆向物流管理

    逆向物流管理

    本书系统性、实用性强,体系编排新颖、严谨,语言精练,且每章均含有经典案例供阅读讨论。此外,在编写过程中,尽量归纳国内外逆向物流管理的最新研究与实践成果,注重理论联系实际,并注重区别于国内目前存在的逆向物流管理书籍的一般编排格式。本书可以作为管理类专业本科生和相关专业研究生的教材或教学参考书,也可作为物流从业人员的培训用书或自学参考书。
  • 演讲与口才实训

    演讲与口才实训

    本书内容包括:语言基础、态势语言、命题演讲、即兴演讲、辩论演讲、沟通口才、谈判口才等。
热门推荐
  • 魔道纵横九界

    魔道纵横九界

    奇幻九界,将面临一场大劫。少年时的莫星雨,选择修炼魔道,励志纵横九界。红尘滚滚,莫星雨将如何应对?自古英雄难过美人关。一切,都在聚行峰开始,而九界巅峰只是一个过程。(中断更新。)
  • TF BOYS之你若不离

    TF BOYS之你若不离

    人的一生中,总是在不停地得到和失去……他们是最具人气偶像组合TFBOYS三个帅气的优秀少年,她们是一群漂亮可人的女孩,他们将上演什么样的友谊和恋情。她是他最喜欢的女孩,她也傻傻喜欢那个男孩。然而年少不懂珍惜的他们又错过了彼此。多年后…是谁爱得心碎,是爱在苦苦挣扎,有谁默默守候待她重新出现在他们面前,又是一段怎样的纠结?最后她跟谁幸福生活,名花亦落谁家?
  • 逆天魔神魂

    逆天魔神魂

    这是一个来自一千年后斗罗大陆的故事,不过此时的斗罗大陆已变得扩张许多。这是一个自成一体的故事,主人公不是所谓的圣人。夜魂,魔神殿遗孤,又是如何一步步迈上巅峰当魔神柱重现大陆,当魔神殿再次崛起,他又该如何抉择。久久爱酒酒新书,《逆天魔神魂》
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 衣冠风流

    衣冠风流

    一个出自江南刺绣世家,女工全才的男子穿越回古代。看他如何用一根针刺破艰险,一团线牵织姻缘,一把尺丈量天下!——富贵荣华剪不断,爱恨情仇理更乱,道不尽的衣冠风流!
  • 当时间与世纪重合

    当时间与世纪重合

    人,永远不知道,在时间的另一端,自己会是什么样的。或许,遇到相同的人,在时间的夹缝的角度不同,结果也就不一样。猜想,推测,后悔,感叹,日日重复着。时间永远不会停住,所以告诉我,在时间的另一边,你,也爱着我。世纪,过去。又一个时间,我们相遇。却忘记了彼此。时间与世纪重合,你是否如往,爱着我?
  • 青少年应该知道的秧歌和鼓舞(阅读中华国粹)

    青少年应该知道的秧歌和鼓舞(阅读中华国粹)

    阅读中华国粹系列是一部记录中华国粹经典、普及中华文明的读物,又是一部兼具严肃性和权威性的中华文化典藏之作,可以说是学术性与普及性结合。丛书囊括古今,泛揽百科,不仅有相当的学术资料含量,而且有吸引入的艺术创作风味,是中华传统文化的经典之作。本书分为秧歌、鼓舞两部分,主要内容包括:东北秧歌;山东秧歌;河北秧歌;河南秧歌;山西秧歌;陕西秧歌等。
  • 废柴逆天:杀手五小姐

    废柴逆天:杀手五小姐

    她萧家第三十八任家主萧玲珑,杀手界女王,银魅,天之骄女却因意外而死。【不得不说死的很憋屈】她,萧家五小姐,一个从出生就被检测到灵根的萧家废柴,却被自己好友为情所害,一命呜呼,当她,变成她,废柴归来,爹护短,哥妹控,看她如何带家人强者之路他妖孽帝君不近女色为何非偏偏缠上她谁能告诉她这个都比是谁高冷帝君去哪了?《男强女强,看二人如何虐渣》第一次写,难免有些潦草,勿怪
  • 都市醒来

    都市醒来

    蒙放一觉醒来,发现自己是从一个坟坑里爬出来的。脑子里残缺的记忆直接将他沉睡前直指向了万年前。但残缺的记忆编组起来,他也记不得到到底是怎么回事。他从山上下来,走入他完全陌生的现代都市。在这万年后的世界里,寻找着他万年前沉睡的秘密。
  • 风筝是城市的花朵

    风筝是城市的花朵

    本书是散文集。作者生活在南方,无边的蒲竿在风中起伏的画面在作者记忆中像是一幅旧水彩……