登陆注册
5975900000003

第3章 1用砂粒填满宇宙(2)

为什么不承认呢?理由很简单:阿基米德预先在直尺上作了一个记号P,使直尺实际上具备有刻度的功能。这是一个不能容许的“犯规”动作。因为古希腊人规定:在尺规作图法中,直尺上不能有任何刻度,而且直尺与圆规都只准许使用有限次。

阿基米德失败了。但他的解法表明,仅仅在直尺上作一个记号,马上就可以走出这座数学迷宫。数学家们想:能不能先不在直尺上作记号,而在实际作图的过程中,逐步把这个点给找出来呢……

古希腊数学家全都失败了。2000多年来,这个问题激动了一代又一代的数学家,成为一个举世闻名的数学难题。笛卡儿、牛顿等许许多多最优秀的数学家,也都曾拿起直尺圆规,用这个难题测试过自己的智力……

无数的人都失败了。2000多年里,从初学几何的少年到天才的数学大师,谁也不能只用直尺和圆规将一个任意角三等分!一次接一次的失败,使得后来的人们变得审慎起来。渐渐地,人们心中生发出一个巨大问号:三等分一个任意角,是不是一定能用直尺与圆规作出来呢?如果这个题目根本无法由尺规作出,硬要用直尺与圆规去尝试,岂不是白费气力?

以后,数学家们开始了新的探索。因为,谁要是能从理论上予以证明:三等分任意角是无法由尺规作出的,那么,他也就解决了这个着名的数学难题。

1837年,数学家们终于赢得了胜利。法国数学家闻脱兹尔宣布:只准许使用直尺与圆规,想三等分一个任意角是根本不可能的!

这样,他率先走出了这座困惑了无数人的数学迷宫,了结了这桩长达2000多年的数学悬案。

8化圆为方问题

古希腊数学家苛刻地限制几何作图工具,规定画几何图形时,只准许使用直尺和圆规,于是,从一些本来很简单的几何作图题中,产生了一批着名的数学难题。除了前面讲过的三等分角问题和立方倍积问题之外,还有一个举世闻名的几何作图难题,叫做化圆为方问题。

据说,最先研究这个问题的人,是一个叫安拉克萨哥拉的古希腊学者。

安拉克萨哥拉生活在公元前5世纪,对数学和哲学都有一定的贡献。有一次,他对别人说:“太阳并不是一尊神,而是一个像希腊那样大的火球。”结果被他的仇人抓住把柄,说他亵读神灵,给抓进了牢房。

为了打发寂寞无聊的铁窗生涯,安拉克萨哥拉专心致志地思考过这样一个数学问题:怎样作出一个正方形,才能使它的面积与某个已知圆的面积相等?这就是化圆为方问题。

当然,安拉克萨哥拉没能解决这个问题。但他也不必为此感到羞愧,因为在他以后的2400多年里,许许多多比他更加优秀的数学家,也都未能解决这个问题。

有人说,在西方数学史上,几乎每一个称得上是数学家的人,都曾被化圆为方问题所吸引过。几乎在每一年里,都有数学家欣喜若狂地宣称:我解决了化圆为方问题!可是不久,人们就发现,在他们的作图过程中,不是在这里就是在那里有着一点小小的,但却是无法改正的错误,随之爆发出一阵阵善意的笑声。

化圆为方问题看上去这样容易,却使那么多的数学家都束手无策,真是不可思议!

年复一年,有关化圆为方的论文雪片似地飞向各国的科学院,多得叫科学家们无法审读。1775年,法国巴黎科学院还专门召开了一次会议,讨论这些论文给科学院正常工作造成的“麻烦”,会议通过了一项决议,决定不再审读有关化圆为方问题的论文。

然而,审读也罢,不审读也罢,化圆为方问题以其特有的魅力,依旧吸引着成千上万的人。它不仅吸引了众多的数学家,也让众多的数学爱好者为之神魂颠倒。15世纪时,连欧洲最着名的艺术大师达·芬奇,也曾拿起直尺与圆规,尝试解答过这个问题。

达·芬奇的作图方法很有趣。他首先动手做一个圆柱体,让这个圆柱体的高恰好等于底面圆半径r的一半,底面那个圆的面积是πr2。然后,达·芬奇将这个圆柱体在纸上滚动一周,在纸上得到一个矩形,这个矩形的长是2πr,宽是r/2,面积是πr2,正好等于圆柱底面圆的面积。

经过上面这一步,达·芬奇已经将圆“化”为一个矩形,接下来,只要再将这个矩形改画成一个与它面积相等的正方形,就可以达到“化圆为方”的目的。

达·芬奇解决了化圆为方问题吗?没有,因为他除了使用直尺和圆规之外,还让一个圆柱体在纸上滚来滚去。在尺规作图法中,这显然是一个不能容许的“犯规”动作。

与其他的两个几何作图难题一样,化圆为方问题也不能由尺规作图法完成。这个结论是德国数学家林德曼于1882年宣布的。

林德曼是怎样得出这样一个结论的呢?说起来,还与大家熟悉的圆周率π有关呢。

假设已知圆的半径为r,它的面积就是πr2;如果要作的那个正方形边长是X,它的面积就是X2。要使这两个图形的面积相等,必须有。

X2=πr2

即X=πr。

于是,能不能化圆为方,就归结为能不能用尺规作出一条像πr那样长的线段来。

数学家们已经证明:如果π是一个有理数,像πr这样长的线段肯定能由尺规作图法画出来;如果π是一个“超越数”,那么,这样的线段就肯定不能由尺规作图法画出来。

林德曼的伟大功绩,恰恰就在于他最先证明了π是一个超越数,从而最先确认了化圆为方问题是不能由尺规作图法解决的。

三大几何作图难题让人类苦苦思索了2000多年,研究这些数学难题有什么意义呢?

有人说,如果把数学比作是一块瓜田,那么,一个数学难题,就像是瓜叶下偶尔显露出来的一节瓜藤,它的周围都被瓜叶遮盖了,不知道还有多长的藤,也不知道还有多少颗瓜。但是,抓住了这节瓜藤,就有可能拽出更长的藤,拽出一连串的数学成果来。

数学难题的本身,往往并没有什么了不起。但是,要想解决它,就必须发明更普遍、更强有力的数学方法来,于是推动着人们去寻觅新的数学手段。例如,通过深入研究三大几何作图难题,开创了对圆锥曲线的研究,发现了尺规作图的判别准则,后来又有代数数和群论的方程论若干部分的发展,这些,都对数学发展产生了巨大的影响。

9中国剩余定理

古时候,我国有一部很重要的数学着作,叫《孙子算经》。书中的许多古算题,如“物不知数”问题、“鸡兔同笼”问题等等,都编得饶有情趣,1000多年来,一直在国内外广为流传。其中,尤以物不知数问题最为着名。

物不知数问题的大意是:“有一堆物体,不知道它的数目。如果每3个一数,最后会剩下2个;每5个一数,最后会剩3个;每7个一数,最后会剩下2个。求这堆物体的数目。”

这是一个不定方程问题,答案有无穷多组。按照现代解不定方程的一般步骤,解答起来是比较麻烦的。而若按照我国古代人民发明的一种算法,解答起来就简单得出奇。有人将这种奇妙的算法编成了一首歌谣:

三人同行七十稀,五树梅花廿一枝,

七子团圆正半月,除百零五便得知。

歌谣里隐含着70、21、15、105这4个数。只要记住这4个数,算出物不知数问题的答案就轻而易举了。尤其可贵的是,这种奇妙的算法具有普遍的意义,只要是同一类型的题目,都可以用这种方法去解答。

《孙子算经》最先详细介绍了这种奇妙的算法。书中说:凡是每3个一数最后剩下1个,就取70;每5个一数最后剩1个,就取21;每7个一数最后剩下1个,就取15。把它们加起来,如果得数比106大,就减去105。最后求出的数就是所有答案中最小的一个。

在物不知数问题里,每3个一数最后剩2,应该取2个70;每5个一数最后剩3,应该取3个21;每7个一数最后剩2,应该取2个15。由于2×70+3×21+2×15等于233,比106大,应该减去105;相减后得128,仍比106大,应该再减去105,得23。瞧,只需寥寥几步,我们就算出了题目的答案。

这种奇妙的算法有许多有趣的名称,如“鬼谷算”、“韩信大点兵”、“秦王暗点兵”等等,并被编成许多有趣的数学故事。它于12世纪末就流传到了欧洲国家。

可是,13世纪下半叶,我国数学家秦九韶遇到了一个与物不知数问题很相似的题目,却不能用这种奇妙的算法来解答。

秦九韶遇到的题目叫“余米推数”问题,在数学史上也很名。它有一种有趣的表述形式。

一天夜里,一群盗贼洗劫了一家米店,放在店堂里的3箩米几乎被席卷一空。第二天,官府派人勘查了现场,发现3个箩一样大,中间那个箩里还剩下14合米,而两边的箩里只剩下1合米了。

盗贼偷走了多少米呢?店主不记得每个萝里装了多少米,只记得它们装得一样多。

后来,行窃的3个盗贼都被抓住了。可是,他们也不知道偷了多少米。那天晚上,店堂里漆黑一团,盗贼甲摸到了一个马勺,用它从左边那个箩里舀米;盗贼乙摸到一个木鞋,用它从中间那个箩里舀米;盗贼丙摸到一个漆碗,用它从右边那个箩里舀米。盗贼们不记得舀了多少次,只记得每次都正好舀满,舀完最后一次后,箩里剩下的米都已不够再舀一次了。

在米店里,人们找到马勺、木鞋和漆碗,发现马勺一次能舀19合米,木鞋一次能舀17合米,而漆碗一次只能舀12合米。问米店共被窃走多少米,3个盗贼各盗窃了多少米?

为什么说余米推数问题与物不知数问题很相似呢?如果把米店被窃走的米数看作是一堆物体,这个题目实际上就是:

有一堆物体,不知道它的数目。如果每19个一数,最后剩下1个,每17个一数,最后剩14个,每12个一数,最后剩下1个。求这堆物体的数目。

秦九韶想,既然这两个题目很相似,那么,它们的解法也应该很相似。“鬼谷算”解答不了余米推数问题,说明它还不够完善,于是他深入探索了古代算法的奥秘,经过苦心钻研,终于在古代算法的基础上,创造出一种更普遍、更强有力的奇妙算法。

这种新算法也就是驰名世界的“大衍求一术”,它是我国古代数学里最有独创性的成就之一。国外直到19世纪,才由大数学家高斯发现同样的定理。因此,这个定理也就被人叫做“中国剩余定理”。

秦九韶也因此获得了不朽的声誉。西方着名数学史专家萨顿,对秦九韶创造性的工作给予了极高的评价,称赞秦九韶是“他的民族、他的时代以至一切时期的最伟大的数学家之一”。

10数学怎样跌进“黑洞”

我们来作一个有趣的数字游戏:请你随手写出一个三位数(要求三位数字不完全相同),然后按照数字从大到小的顺序,把三位数字重新排列,得到一个新数。接下来,再把所得的数的数字顺序颠倒一下,又得到一个新数。把两个新数的差作为一个新的三位数,再重复上述的步骤。继续不停地重复下去,你会得到什么样的结果呢?

例如323,第一个新数是332,第二个新数是是233,它们的差是099(注意以0开头的数,也得看成是一个三位数);接下来,990-099=891;981-189=792;972-279=693;963-369=594;954-459=495;954-459=495……

这种不断重复同一操作的过程,在计算机上被称为“迭代”。有趣的是,经过几次迭代之后,三位数最后都会停在495这个数上。

那么对于四位数,是不是也会出现这种情况呢?结果是肯定的,最后都会停在6174这个数上。它仿佛是数的“黑洞”,任何数字不完全相同的四位数,经过上述的“重排”和“求差”运算之后,都会跌进这个“黑洞”——6174,再也出不来了。

前苏联作家高基莫夫在其所着的《数学的敏感》一书中,曾把它列作“没有揭开的秘密”。

有时候,“黑洞”并不仅只有一个数,而是有好几个数,像走马灯一样兜圈子,又仿佛孙悟空跌进了如来佛的手掌心。

例如,对于五位数,已经发现了两个“圈”,它们分别是{63954,61974,82962,75933}与{62964,71973,83952,74943}。有兴趣的读者不妨自己验证一下。

11破碎砝码的妙用

一个商人不慎将一个重40磅的砝码跌落在地面上碎成4块,恰巧每块都是整数磅,后来他又意外发现,可以用这4块碎片做成可以称1到40磅的任意整数磅的重物的新砝码。请你猜一猜,这4块碎片的重量各是多少?

这就是着名的德·梅齐里亚克的砝码问题。这位法国数学家采用“迂回进击”的战术,使问题得到解决。

他是这样演绎的:

首先说明一个结论:如果有一系列砝码,把它们适当地分放在天平的两个托盘上,能称出1到n的所有整数磅重物(这时这些砝码重量的和也一定为n磅)。另设有一块砝码,它的重量为m磅(m=2n+1),那么原来所有的砝码再加砝码m所组成的砝码组便能称出从1到3n+1的所有整数磅的重物。

因为,原砝码组可称出重量1到n的所有整数磅重物。而原砝码组与重量为m磅的砝码可以秤n+1到2n+1磅的所有整数磅重物。

由此可判定这4块砝码的重量:

第一块砝码取m1=1(磅)

第二块砝码取m2=2×1+1=3(磅)

第三块砝码取m3=2(1+3)+1=9(磅)

第四块砝码取m4=2(1+3+9)+1=27(磅)

用这4块砝码可秤从1到(1+3+9+27)=40磅间的任何一个整数磅重物。

12你能算出哪一天是星期几吗

如果你要想知道历史上一些重要日子,或是未来随便哪一天是星期几,不翻日历,能计算出来吗?

根据历法原理,按照下面的公式计算,就可以知道某年、某月、某日是星期几了。

这个公式是:

S=x-1+x-14-x-1100+x-1400+C。

这里x是公元的年数,C是从这一年的元旦算到这天为止(连这一天也在内)的日数。x-14表示为x-14的整数部分;在计算S时,三个分数式只要商数的整数部分,余数略去不计,再把其它几项依次加减,就可得到S。

求出S以后,用7除;如果恰能除尽,这一天一定是星期日;若余数是1,那么这一天是星期一;余数是2,这一天就是星期二,依此类推。

例1:1921年7月1日,中国共产党在上海成立。你可知道1921年7月1日是星期几?

按上面的公式,可得:

S=1921-1+1921-14-1921-1100+1921-1400+(31+28+31+30+31+30+1)=1920+480-19+4+182=2567。

2567÷7=366……5。

所以1921年7月1日是星期五。

例2:1949年10月1日是伟大的中华人民共和国成立的日子,这一天是星期几?

按上面公式计算,可以知道:

S=1949-1+1949-14-1949-1100+1949-1400+(31+28+31+30+31+30+31+30+1)=1948+487-19+4+274=2694。

2694÷7=384……6。

所以1949年10月1日是星期六。

例3:1984年元旦是星期几?

按上面公式可得:

同类推荐
  • 小学综合实践活动课题研究与论文写作

    小学综合实践活动课题研究与论文写作

    本书上编单独阐述了有关小学综合实践活动课程的基本概念及具有该课程特点的课程研究的基本概念与内涵,以及课题方案的设计要领。本书的中编阐述了各种实证性的小学综合实践活动课题结题报告的撰写及教育统计法在教育研究中的应用。而在本书的下编,则着重阐述了一般的科研论文的撰写要领以及论文答辩的基本程序与应对策略。
  • 中国教育史

    中国教育史

    中国教育史是教育科学的重要分支学科,是教育学专业的核心课程。它运用历史唯物主义的观点方法,讲述人类社会自古至今教育制度和教育思想发生、发展、演变的过程,总结不同历史阶段教育的经验、教训及其特征,揭示教育发展的客观规律。
  • 吹响未来的哨音

    吹响未来的哨音

    榜样的力量是无穷的。我们生活的这个世界之所以越来越美好,越来越进步,就是因为有无数的精英人物前赴后继,用生命和鲜血换来的。他们有的为民请命,有的慷慨赴死,有的钻研学问,有的发明创造……
  • 与哲人一起思考哲学(快乐校园精品读物丛书)

    与哲人一起思考哲学(快乐校园精品读物丛书)

    《快乐校园精品读物丛书:与哲人一起思考哲学》名为《与哲人一起思考哲学》,着重点主要放在哲学对人生的启迪上。第一部分和第二部分比较全面地介绍了中外哲学发展史上的主要流派和基本思想,了解这些,能让我们知道自己的思想根源从哪里来,从而引发我们对自己的人生进行比较深刻的思考。
  • 《弟子规》新解

    《弟子规》新解

    《〈弟子规〉新解》共有8课、18节。其中,第一课“总叙”和第七课“亲仁”各一节。每课每节的题目都用原文表示,如第二课“入则孝”其中第一节的题目是:父母呼应勿缓。
热门推荐
  • 女配逆袭:系统在手,男主我有

    女配逆袭:系统在手,男主我有

    新一代女配,扮得了萝莉,玩得起御姐,装得了小白,演得起女王;扳得倒黑莲花,斗得过玛丽苏;拐得跑男主,劫得走男配;既要可爱迷糊天然呆,又要活泼调皮自然萌。某洛双手环胸,狡黠一笑:“系统在手,天下我有。”
  • 春秋后记

    春秋后记

    仙之国度,神之弃子,有仙人一怒酿浮尸血海;凡尘人间,天地法则,有宗师拔剑开天地沟壑;三秋五载,世俗之事,有夫子舌战破百万雄兵。且听,有声慷慨激昂,高歌而泣;且闻,古今风流韵事,如歌如梦;且看,世间英雄豪杰,意气风发。乱世当出英雄,英雄当是年少。这里是快意恩仇的江湖,也是人心角逐的庙堂,更是法则万象的修真世界。
  • 王武天下

    王武天下

    特种部队成员王武,在世界末日——虫巢,来临之时领取上级命令乘坐‘光阴’跃迁到过去,想要将‘虫巢’扼杀在摇篮中。谁知在执行任务之后,踏入逆反的‘光阴’却发生意外。穿越到了一个陌生的世界,占取了一个同名但是却陌生的人的身体。上一世并不是为自己而活,这一世那就为自己精彩地活着。
  • 就算与世界为敌我也依然等你

    就算与世界为敌我也依然等你

    大二的慕凉兮暗恋比他大一届的大三学长洛泽。洛泽作为全校女生暗恋的对象。慕凉兮只能和那些女生一样眼睁睁的看着。突然有一天,学长变得很奇怪,很喜欢和她一起学习。和慕凉兮签了契约的男生,心疼的看着她一点点被伤害。最后,她们订婚了。
  • 盗墓生涯之人皮残卷

    盗墓生涯之人皮残卷

    :琪嘉无意中收了一张人皮残卷,残卷上未知的秘密让琪嘉卷入了一场场未知危险中,也同时走上了盗墓这条道路。墓里奇怪的陪葬品,消失的文字,可怕的蛊咒,神秘的墓主人究竟是谁,一个又一个的谜团,琪嘉在这危机重重的古墓里究竟会如何?
  • 男神溺爱:校草的高冷宠溺对象

    男神溺爱:校草的高冷宠溺对象

    一般都是男生高冷女生追男生把……今天涵大大带大家改变一下……现在是男生追女生的时代(好像原本就是的)准确来说现在是高冷校草追高冷女神!!!高冷+高冷=逗比?高冷?
  • 本空

    本空

    这是一场惊天动地大乱,一片破败的宇宙中两个人……一场阴谋……还是一次灭世……亦或新生……他的到来,将迎来这一切答案!
  • 无敌圣王

    无敌圣王

    创造一方属于自己的世界!打造一个经典的传说!走自己的道,让世人尊嘱自己的法则!我要这天、这地尽在我的掌握之中!…………激情、热血的爽文,一切尽在《无敌圣王》。
  • 玄冲凌霄

    玄冲凌霄

    这是个玄力横空的世界,强者建立了帝国家,宗派等为他们提供修炼资源,统治大陆。他们发动着种族战争,漠视着同族相残,一切都是为了资源。主角被一片寒冰包裹着,随波逐流的来到了东炎大陆的放逐之地,且看失去修炼资质的主角如何叱咤风云,名震一界!修行境界分为入玄境,开玄境,玄战境,玄灵境,玄魂境,玄天境,还有飘渺的玄帝境。
  • 桂海苍茫

    桂海苍茫

    一个人的体验,一位作家的眼光,穿越千年广西,穿越地理桂海。于是,赤子之心发现了一份份被遗落的时空形态,一片片人们应该拾捡的文明碎片。本书是著名散文家、广西作家协会主席冯艺关于广西的人文地理笔记。笔记里有许多广西史书上不该忘却的背影,许多或伟大或平凡的人文墓碑。作者以本土作家的高度责任感和一腔人文情怀,描述了广西这方水土浓密的阳光和水气背后的苍茫的人文地理。丰沛而智性,详实而诗意,融文化积淀与个体体验于一体,意境苍凉。于是,从本书您也许会看到另一个人文的广西。