登陆注册
25333100000035

第35章 函数

函数(function),最早由中国清朝数学家李善兰翻译,出于其着作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

基本信息

中文名:函数

英文名:function

表达式:y=f(x)

应用学科:数学、计算机科学等

表示法:列表法、图像法、解析法

三要素:自变量、因变量、对应法则

“函数”由来

中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的.

中国古代“函”字与“含”字通用,都有着“包含”的意思.李善兰给出的定义是:“凡式中含天,为天之函数.”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量.这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数.”所以“函数”是指公式里含有变量的意思.我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专着《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。

函数的特性

有界性

正在加载函数

设函数f(x)在区间X上有定义,如果存在M>0,对于一起属于区间X上的x,恒有

,则称f(x)在区间X上有界,否则称f(x)在区间上无界

单调性

设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x及x,当xf(x),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

奇偶性

正在加载函数

为一个实变量实值函数,若有

,则f(x)为奇函数。

几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。

奇函数的例子有x、sin(x)、sinh(x)和erf(x)。

正在加载函数

设f(x)为一实变量实值函数,若有

,则f(x)为偶函数。

几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。

偶函数的例子有|x|、x2、cos(x)和cosh(x)。

偶函数不可能是个双射映射。

周期性

正在加载函数

设函数f(x)的定义域为D。如果存在一个正数T,使得对于任一

,且f(x+T)=f(x)恒成立,则称f(x)为周期函数,T称为f(x)的周期,通常我们说周期函数的周期是指最小正周期。周期函数

的定义域D为至少一边的无界区间,若D为有界的,则该函数不具周期性。并非每个周期函数都有最小正周期,例如狄利克雷函数。

周期函数有以下性质:

(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

正在加载函数

(3)若T1与T2都是f(x)的周期,则

也是f(x)的周期。

(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

(5)T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q(Q是有理数集)

(6)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(7)周期函数f(x)的定义域M必定是双方无界的集合。

连续性

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

设f是一个从实数集的子集射到的函数:。f在中的某个点c处是连续的当且仅当以下的两个条件满足:

f在点c上有定义。c是中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x)的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。

不用极限的概念,也可以用下面所谓的方法来定义实值函数的连续性。

仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:

对于任意的正实数,存在一个正实数δ>0使得对于任意定义域中的δ,只要x满足c-δ<x<c+δ,就有成立。

凹凸性

正在加载函数

设函数

上连续。如果对于

上的两点

,恒有

正在加载函数

正在加载函数

正在加载函数

那么称第一个不等式中的

是区间

上的凸函数;称第二个不等式中的

为严格凸函数

同理如果恒有

正在加载函数

正在加载函数

正在加载函数

那么称第一个不等式中的

是区间

上的凹函数;称第二个不等式中的

为严格凹函数

复合函数

正在加载函数

设函数

的定义域为

,函数

在D上有定义(D是构成符合函数的定义域,它可以是

定义域的一个非空子集),且

,则函数

称为由函数

和函数

构成的复合函数,它的定义域为D,变量

称为中间变量。

正在加载函数

并不是任何两个函数都可以复合成一个复合函数,若D为空集,则

和函数

不能复合

反函数

正在加载函数

一般地,设函数

,值域是W,对于每一个属于W的y,有唯一的x属于D,使得f(x)=y,这时变量x也是变量y的函数,称为y=f(x)的反函数,记作

。而习惯上y=f(x)的反函数记为

习惯上只有一一对应的函数才有反函数。而若函数是定义在其定义域D上的单调增加或单调减少函数,则其反函数在其定义域W上单调增加或减少。原函数与反函数之间关于y=x对称

分段函数

在自变量的不同变化范围内,对应法则用不同解析式子来表示的一个函数,称为分段函数

。分段函数的定义域是各段定义域的并集。

多项式函数

常函数

x取定义域内任意数时,都有y=C(C是常数),则函数y=C称为常函数,

其图象是平行于x轴的直线或直线的一部分。

一次函数

正在加载函数

在某一个变化过程中,设有两个变量x和y,如果可以写成

(k为一次项系数,k≠0,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。特别的,当b=0时,称y是x的正比例函数。

基本性质

1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。

在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b);当y=0时,一次函数图像与x轴相交于(﹣b/k)

3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。

4.在两个一次函数表达式中:

当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;

当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;

当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;

当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);

当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,

该函数的对称轴为-(k2b1+k1b2)/(2k1k2);

当k1,k2正负相同时,二次函数开口向上;

当k1,k2正负相反时,二次函数开口向下。

二次函数与y轴交点为(0,b2b1)。

6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。

7.当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)。

图像

正在加载一次函数的图像

如右图所示,一次函数y=kx+b(k≠0)图像是直线,过(0,b)和(-b/k,0)两点。特别地,当b=0时,图像过原点。

一次函数和方程的联系与区别:

1、一次函数和一元一次方程有相似的表达形式。

2、一次函数表示的是一对(x,y)之间的关系,它有无数对解;一元一次方程表示的是未知数x的值,最多只有1个值。

3、一次函数与x轴交点的横坐标就是相应的一元一次方程的根。

从函数的角度看,解不等式的方法就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围的一个过程;

从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。

对应一次函数y=kx+b,它与x轴交点为(-b/k,0)。

当k>0时,不等式kx+b>0的解为:x>-b/k,不等式kx+b<0的解为:x<-b/k;

当k<0的解为:不等式kx+b>0的解为:x<-b/k,不等式kx+b<0的解为:x>-b/k。

二次函数

正在加载函数

一般地,自变量x和因变量y之间存在如下关系:

,则称y为x的二次函数。二次函数的定义域为实属域R。常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)

二次函数还有以下两种表示方式:

正在加载函数

顶点式:

;

正在加载函数

交点式(与x轴):

从右图可见二次函数图像是轴对称图形。

函数性质

1.二次函数是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数

同类推荐
  • 超神之光明归来

    超神之光明归来

    十九神石,破碎之日,天升异变。天地为我,我为天地,我是超神。
  • 天道妖王

    天道妖王

    环力魂力充斥的世界力量勇气诉说的传奇沉寂千年的古族复仇的实验少年他能摆脱宿命掌握自己的未来吗看他如何在强者世界中成长傲视群雄
  • 蛟龙再现

    蛟龙再现

    对于有些人来说,人生短短几十载,若不能有所作为,就会愧对于天地,他们追求的只是个人价值的体现,然而另一部人人来说却有着不同的意义!他们为了达到自己的欲望,成为人中龙凤,不择手段去追求更高一层的修为……
  • 异界之笑傲苍穹

    异界之笑傲苍穹

    不就是喝了点酒么?不就是睡了一大觉么?不就是做了一个梦么?这就穿越了?天下之不平事到哪都有,到哪都能被我遇到,那便由我扫平天下不公之事!天地不仁,那我便与天地斗!
  • 末世为王之我是丧尸

    末世为王之我是丧尸

    萧尘本是一得了脑癌的高三学生,谁知竟被利用注射了丧尸病毒,自己成为了一代丧尸体。杀人还是被杀?对血肉的渴望使萧尘无法自拔!什么?可恶的Dr.陈竟然还制造了二代丧尸体,丧尸各自为王!升级!升级!只有不断的升级才能活下来!谁料却遇美女杀手丧尸,更是掀起一番恋爱的惊涛骇浪!“我欲为王,万物臣服!”
热门推荐
  • 火澜

    火澜

    当一个现代杀手之王穿越到这个世界。是隐匿,还是崛起。一场血雨腥风的传奇被她改写。一条无上的强者之路被她踏破。修斗气,炼元丹,收兽宠,化神器,大闹皇宫,炸毁学院,打死院长,秒杀狗男女,震惊大陆。无止尽的契约能力,上古神兽,千年魔兽,纷纷前来抱大腿,惊傻世人。她说:在我眼里没有好坏之分,只有强弱之分,只要你能打败我,这世间所有都是你的,打不败我,就从这世间永远消失。她狂,她傲,她的目标只有一个,就是凌驾这世间一切之上。三国皇帝,魔界妖王,冥界之主,仙界至尊。到底谁才是陪着她走到最后的那个?他说:上天入地,我会陪着你,你活着,有我,你死,也一定有我。本文一对一,男强女强,强强联手,不喜勿入。
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 大宋帝国三百年:文功武治宋太宗(上)

    大宋帝国三百年:文功武治宋太宗(上)

    《大宋帝国三百年》共计8卷17册,突破了以纯研究为本,或以戏说为表的写作格局,将历史陈述与思想探索融为一体,既是一部大历史,也是一部剖析中国社会由衰及盛的思想专著。全书既忠实于历史,考证渲染相得益彰,又评判缜密,不乏真知灼见,叙事宏大广阔,生动有趣,余味无穷,为解读历史提供了一个新范本。
  • 恋上耽美:黑白

    恋上耽美:黑白

    怪盗基德【黑羽快斗】x白马探关于名侦探柯南【魔术快斗or怪盗基德1412】的耽美同人
  • 土司灯仪

    土司灯仪

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 都市绝代仙医

    都市绝代仙医

    青年偶得绝代医王宝典,从此踏上都市修行路。
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • City Woman④:三生不幸遇见你

    City Woman④:三生不幸遇见你

    笨笨笨!她真是宇宙无敌第一大白痴!以整她为乐的恶魔回国,不快逃到天涯海角,反而还傻傻的自投罗网让他逮个正着!他用天使脸孔、骗死人不偿命的微笑迷惑世人。只有她看清他隐藏在假面具下邪恶的心。甜蜜初恋被他破坏,还把她贬得一文不值。这回他更过分,干脆直接将她推入婚姻坟墓……嫁给这个大坏蛋,她的人生更是黑暗无光。度个蜜月却遇上飞机失事而流落荒岛,好不容易重返文明世界又受到炸弹威胁。唉!她就知道遇上他真是三生不幸啊……
  • 校草的甜心:爱的代价

    校草的甜心:爱的代价

    她因要替最重要的人报仇而来到他身边,并成为他的同桌,他看到了这个女孩的与众不同,为了让他也尝到致爱离去的滋味,她成为了他的女朋友,可是他的单纯、善良让她不断犹豫,他说:“爱一个人是不受控制的,不爱一个人也是不可勉强的。”她看着他,那你知不知道,因为你的不能勉强,我失去了我最重要的人。只道真相后,他答应家族联姻,订婚当日,抛下所有人,逃婚只为问她一句:“你爱过我吗?”她清描淡写一句“没有。”因为你是琳爱的人,所以我不能爱你,他痛心地问她:“在你眼里,我算什么,曾经的恋人,仇人,还是被你玩弄于孤掌之间的傻瓜。”看到他痛苦,她不是应该开心吗,可是为什么她会如此难过
  • 史上第一纨绔:王的童养媳

    史上第一纨绔:王的童养媳

    (新书已发《霸宠痞妃:皇叔,正经点》已发)天之娇女一朝穿越成悲催娃。筋脉堵塞无法淬体凝魂的废物?容貌丑陋反应木讷白痴一个?家族耻辱必须除去?靠靠靠,等她长大,惊才绝艳亮瞎你的狗眼,腹黑无双坑的你连妈都不认识。这破家族,踏平之!这不公的世界,颠覆之!还有追着她喊媳妇儿的妖孽,扑倒之!从此,她就成了这妖孽的“童养媳”。她打劫,他搜宝;她报仇,他递刀;男女搭配,让天下欲哭无泪!(宠文一对一)