看一下X是如何猜出ISNs :
a、首先, X发送一个SYN包来获取服务器现在的ISNs
X ---〉S: (ISNx)
S ---〉X: ACK(ISNx)+ ISNs# (1)
b、紧接着,X冒充T向服务器发送SYN包
X ---〉S: SYN(ISNx ) , SRC = T (2)
c、于是,服务器发出一个响应包给T(这个包X是收不到的)
S ---〉T: SYN(ISNs) , ACK(ISNT ) (3)
d、X计算ISNs:
ISNs = ISNs# + RTT×Increment of ISN (4)
其中,RTT(Round Trip Time),是一个包往返X和S所用的时间,可以通过Ping 来得到。
上图显示了round trip times (RTT) 大概是0。
Increment of ISN是协议栈的初始序列号每秒钟增加的值,以Unix为例,当没有外部连接发生时,服务器的ISN每秒增加128,000,有连接的时候,服务器的ISN每秒增加64,000。
e、于是,
X ---> S : ACK(ISNs) (冒充可信主机成功了)
X ---> S : 恶意的命令或窃取机密消息的命令
在评价以下的解决方案时有几点要注意:
1.该解决方案是否很好地满足TCP的稳定性和可操作性的要求?
2.该解决方案是否容易实现?
3.该解决方案对性能的影响如何?
4.该解决方案是否经得起时间的考验?
以下的几种方案各有各的优点和缺点,它们都是基于增强ISN生成器的目标提出的。
配置和使用密码安全协议
TCP的初始序列号并没有提供防范连接攻击的相应措施。TCP的头部缺少加密选项用于强加密认证,于是,一种叫做IPSec的密码安全协议的技术提出了。IPSec提供了一种加密技术(End to end cryptographic),使系统能验证一个包是否属于一个特定的流。这种加密技术是在网络层实现的。其它的在传输层实现的解决方案(如SSL/TLS和SSH1/SSH2), 只能防止一个无关的包插入一个会话中,但对连接重置(拒绝服务)却无能为力,原因是因为连接处理是发生在更低的层。IPSec能够同时应付着两种攻击(包攻击和连接攻击)。它直接集成在网络层的安全模型里面。
上面的解决方案并不需要对TCP协议做任何得修改,RFC2385(“基于TCP MD5签名选项的BGP会话保护)和其他的技术提供了增加TCP头部的密码保护,但是,却带来了收到拒绝服务攻击和互操作性和性能方面的潜在威胁。使用加密安全协议有几个优于其它方案的地方。TCP头部加密防止了Hijacking和包扰乱等攻击行为,而TCP层仍然能够提供返回一个简单增加ISN的机制,使方案提供了最大程度的可靠性。但实现IPSec非常复杂,而且它需要客户机支持,考虑到可用性,许多系统都选择使用RFC 1948。
使用RFC1948
在RFC1948中,Bellovin提出了通过使用4-tuples的HASH单向加密函数,能够使远程攻击者无从下手(但不能阻止同一网段的攻击者通过监听网络上的数据来判断ISN)。
Newsham 在他的论文 [ref_newsham]中提到:
RFC 1948 [ref1]提出了一种不容易攻击(通过猜测)的TCP ISN的生成方法。此方法通过连接标识符来区分序列号空间。每一个连接标识符由本地地址,本地端口,远程地址,远程端口来组成,并由一个函数计算标识符分的序列号地址空间偏移值(唯一)。此函数不能被攻击者获得,否则,攻击者可以通过计算获得ISN。于是,ISN就在这个偏移值上增加。ISN的值以这种方式产生能够抵受上面提到的对ISN的猜测攻击。
一旦全局ISN空间由上述方法来生成,所有的对TCP ISN的远程攻击都变得不合实际。但是,需要指出的,即使我们依照RFC 1948来实现ISN的生成器,攻击者仍然可以通过特定的条件来获得ISN(这一点在后面叙述).
另外,用加密的强哈希算法(MD5)来实现ISN的生成器会导致TCP的建立时间延长。所以,有些生成器(如Linux kernel )选择用减少了轮数的MD4函数来提供足够好的安全性同时又把性能下降变得最低。削弱哈希函数的一个地方是每几分钟就需要对生成器做一次re-key 的处理,经过了一次re-key的处理后,安全性提高了,但是,RFC793提到的可靠性却变成另一个问题。
我们已经知道,严格符合RFC1948的ISN生成方法有一个潜在的危机:
一个攻击者如果以前合法拥有过一个IP地址,他通过对ISN进行大量的采样,可以估计到随后的ISN的变化规律。在以后,尽管这个IP地址已经不属于此攻击者,但他仍然可以通过猜测ISN来进行IP欺骗。
以下,我们可以看到RFC 1948的弱点:
ISN = M + F(sip, sport, dip, dport,
)
其中
ISN 32位的初始序列号
M 单调增加的计数器
F 单向散列哈希函数 (例如 MD4 or MD5)
sip 源IP地址
sport 源端口
dip 目的IP地址
dport 目的端口
哈希函数可选部分,使远程攻击者更难猜到ISN.
ISN自身的值是按照一个常数值稳定增加的,所以F()需要保持相对的稳定性。而根据Bellovin 所提出的,是一个系统特定的值(例如机器的启动时间,密码,初始随机数等),这些值并不 会经常变。
但是,如果Hash函数在实现上存在漏洞(我们无法保证一个绝对安全的Hash函数,况且,它的实现又与操作系统密切相关),攻击者就可以通过大量的采样,来分析,其中,源IP地址,源端口,目的IP地址,目的端口都是不变的,这减少了攻击者分析的难度。
Linux TCP的ISN生成器避免了这一点。它每5分钟计算一次值,把泄漏的风险降到了最低。
有一个办法可以做的更好:
取M = M + R(t)
ISN = M + F(sip, sport, dip, dport, )
其中
R(t) 是一个关于时间的随机函数
很有必要这样做,因为它使攻击者猜测ISN的难度更大了(弱点在理论上还是存在的)。
其它一些方法
构造TCP ISN生成器的一些更直接的方法是:简单地选取一些随机数作为ISN。这就是给定一个32位的空间,指定 ISN = R(t)。(假设R()是完全的非伪随机数生成函数)
固然,对于完全随机的ISN值,攻击者猜测到的可能性是1/232是,随之带来的一个问题是ISN空间里面的值的互相重复。这违反了许多RFC(RFC 793, RFC 1185, RFC 1323, RFC1948等)的假设----ISN单调增加。这将对TCP协议的稳定性和可靠性带来不可预计的问题。
其它一些由Niels Provos(来自OpenBSD 组织)结合完全随机方法和RFC 1948解决方案:
ISN = ((PRNG(t)) << 16) + R(t) 32位
其中
PRNG(t) :一组随机指定的连续的16位数字 0x00000000 -- 0xffff0000
R(t) :16位随机数生成器(它的高位msb设成0)0x00000000 -- 0x0000ffff
上面的公式被用于设计OpenBsd的ISN生成器,相关的源代码可以从下面的网址获得
http://www.openbsd.org/cgi-bin/cvsweb/src/...inet/tcp_subr.c
Provos的实现方法有效地生成了一组在给定时间内的不会重复的ISN的值,每两个ISN值都至少相差32K,这不但避免了随机方法造成的ISN的值的冲突,而且避免了因为哈希函数计算带来的性能上的下降,但是,它太依赖于系统时钟,一旦系统时钟状态给攻击者知道了,就存在着系统的全局ISN状态泄密的危机。
TCP ISN生成器的构造方法的安全性评估
ISN与PRNGs(伪随机数生成器)
我们很难用一台计算机去生成一些不可预测的数字,因为,计算机被设计成一种以重复和准确的方式去执行一套指令的机器。所以,每个固定的算法都可以在其他机器上生成同样的结果。如果能够推断远程主机的内部状态,攻击者就可以预测它的输出;即使不知道远程主机的PNRG函数,但因为算法最终会使ISN回绕,按一定的规律重复生成以前的ISN,所以,攻击者仍然可以推断ISN。幸运的是,目前条件下,ISN的重复可以延长到几个月甚至几年。但是,仍然有部分PRNG生成器在产生500个元素后就开始回绕。解决伪随机数的方法是引入外部随机源,击键延时,I/O中断,或者其它对攻击者来说不可预知的参数。把这种方法和一个合理的HASH函数结合起来,就可以产生出32位的不可预知的TCP ISN的值,同时又隐蔽了主机的PNRG的内部状态。不幸的是,很少的TCP ISN产生器是按这种思路去设计的,但即使是这样设计的产生器,也会有很多的实现上的漏洞使这个产生器产生的ISN具有可猜测性。
RFC1948的建议提供了一种比较完善的方法,但是,对攻击者来说,ISN仍然存在着可分析性和猜测性。其中,PRNG的实现是个很关键的地方。
网络安全知识(5)