But how is this remarkable propulsive machine made to perform its functions? If I were suddenly to kill one of these animals and to take out all the soft parts, I should find the shell to be perfectly inert, to have no more power of moving itself than is possessed by the machinery of a mill when disconnected from its steam-engine or water-wheel. But if I were to open it, and take out the viscera only, leaving the white flesh, I should perceive that the lobster could bend and extend its tail as well as before. If I were to cut off the tail, Ishould cease to find any spontaneous motion in it; but on pinching any portion of the flesh, I should observe that it underwent a very curious change--each fibre becoming shorter and thicker. By this act of contraction, as it is termed, the parts to which the ends of the fibre are attached are, of course, approximated; and according to the relations of their points of attachment to the centres of motions of the different rings, the bending or the extension of the tail results.
Close observation of the newly-opened lobster would soon show that all its movements are due to the same cause--the shortening and thickening of these fleshy fibres, which are technically called muscles.
Here, then, is a capital fact. The movements of the lobster are due to muscular contractility. But why does a muscle contract at one time and not at another? Why does one whole group of muscles contract when the lobster wishes to extend his tail, and another group when he desires to bend it? What is it originates, directs, and controls the motive power?
Experiment, the great instrument for the ascertainment of truth in physical science, answers this question for us. In the head of the lobster there lies a small mass of that peculiar tissue which is known as nervous substance. Cords of similar matter connect this brain of the lobster, directly or indirectly, with the muscles. Now, if these communicating cords are cut, the brain remaining entire, the power of exerting what we call voluntary motion in the parts below the section is destroyed; and on the other hand, if, the cords remaining entire, the brain mass be destroyed, the same voluntary mobility is equally lost.
Whence the inevitable conclusion is, that the power of originating these motions resides in the brain, and is propagated along the nervous cords.
In the higher animals the phenomena which attend this transmission have been investigated, and the exertion of the peculiar energy which resides in the nerves has been found to be accompanied by a disturbance of the electrical state of their molecules.
If we could exactly estimate the signification of this disturbance; if we could obtain the value of a given exertion of nerve force by determining the quantity of electricity, or of heat, of which it is the equivalent; if we could ascertain upon what arrangement, or other condition of the molecules of matter, the manifestation of the nervous and muscular energies depends (and doubtless science will some day or other ascertain these points), physiologists would have attained their ultimate goal in this direction; they would have determined the relation of the motive force of animals to the other forms of force found in nature; and if the same process had been successfully performed for all the operations which are carried on in, and by, the animal frame, physiology would be perfect, and the facts of morphology and distribution would be deducible from the laws which physiologists had established, combined with those determining the condition of the surrounding universe.
There is not a fragment of the organism of this humble animal whose study would not lead us into regions of thought as large as those which I have briefly opened up to you; but what I have been saying, I trust, has not only enabled you to form a conception of the scope and purport of zoology, but has given you an imperfect example of the manner in which, in my opinion, that science, or indeed any physical science, may be best taught. The great matter is, to make teaching real and practical, by fixing the attention of the student on particular facts;but at the same time it should be rendered broad and comprehensive, by constant reference to the generalizations of which all particular facts are illustrations. The lobster has served as a type of the whole animal kingdom, and its anatomy and physiology have illustrated for us some of the greatest truths of biology. The student who has once seen for himself the facts which I have described, has had their relations explained to him, and has clearly comprehended them, has, so far, a knowledge of zoology, which is real and genuine, however limited it may be, and which is worth more than all the mere reading knowledge of the science he could ever acquire. His zoological information is, so far, knowledge and not mere hear-say.
And if it were my business to fit you for the certificate in zoological science granted by this department, I should pursue a course precisely similar in principle to that which I have taken to-night. I should select a fresh-water sponge, a fresh-water polype or a 'Cyanaea', a fresh-water mussel, a lobster, a fowl, as types of the five primary divisions of the animal kingdom. I should explain their structure very fully, and show how each illustrated the great principles of zoology.
Having gone very carefully and fully over this ground, I should feel that you had a safe foundation, and I should then take you in the same way, but less minutely, over similarly selected illustrative types of the classes; and then I should direct your attention to the special forms enumerated under the head of types, in this syllabus, and to the other facts there mentioned.