Some of the vapour that is formed by day does not rise high because the ratio of the fire that is raising it to the water that is being raised is small. When this cools and descends at night it is called dew and hoar-frost. When the vapour is frozen before it has condensed to water again it is hoar-frost; and this appears in winter and is commoner in cold places. It is dew when the vapour has condensed into water and the heat is not so great as to dry up the moisture that has been raised nor the cold sufficient (owing to the warmth of the climate or season) for the vapour itself to freeze.
For dew is more commonly found when the season or the place is warm, whereas the opposite, as has been said, is the case with hoar-frost.
For obviously vapour is warmer than water, having still the fire that raised it: consequently more cold is needed to freeze it.
Both dew and hoar-frost are found when the sky is clear and there is no wind. For the vapour could not be raised unless the sky were clear, and if a wind were blowing it could not condense.
The fact that hoar-frost is not found on mountains contributes to prove that these phenomena occur because the vapour does not rise high. One reason for this is that it rises from hollow and watery places, so that the heat that is raising it, bearing as it were too heavy a burden cannot lift it to a great height but soon lets it fall again. A second reason is that the motion of the air is more pronounced at a height, and this dissolves a gathering of this kind.
Everywhere, except in Pontus, dew is found with south winds and not with north winds. There the opposite is the case and it is found with north winds and not with south. The reason is the same as that which explains why dew is found in warm weather and not in cold. For the south wind brings warm, and the north, wintry weather. For the north wind is cold and so quenches the heat of the evaporation. But in Pontus the south wind does not bring warmth enough to cause evaporation, whereas the coldness of the north wind concentrates the heat by a sort of recoil, so that there is more evaporation and not less. This is a thing which we can often observe in other places too. Wells, for instance, give off more vapour in a north than in a south wind. Only the north winds quench the heat before any considerable quantity of vapour has gathered, while in a south wind the evaporation is allowed to accumulate.
Water, once formed, does not freeze on the surface of the earth, in the way that it does in the region of the clouds.
11
From the latter there fall three bodies condensed by cold, namely rain, snow, hail. Two of these correspond to the phenomena on the lower level and are due to the same causes, differing from them only in degree and quantity.
Snow and hoar-frost are one and the same thing, and so are rain and dew: only there is a great deal of the former and little of the latter. For rain is due to the cooling of a great amount of vapour, for the region from which and the time during which the vapour is collected are considerable. But of dew there is little: for the vapour collects for it in a single day and from a small area, as its quick formation and scanty quantity show.
The relation of hoar-frost and snow is the same: when cloud freezes there is snow, when vapour freezes there is hoar-frost.
Hence snow is a sign of a cold season or country. For a great deal of heat is still present and unless the cold were overpowering it the cloud would not freeze. For there still survives in it a great deal of the heat which caused the moisture to rise as vapour from the earth.
Hail on the other hand is found in the upper region, but the corresponding phenomenon in the vaporous region near the earth is lacking. For, as we said, to snow in the upper region corresponds hoar-frost in the lower, and to rain in the upper region, dew in the lower. But there is nothing here to correspond to hail in the upper region. Why this is so will be clear when we have explained the nature of hail.
12
But we must go on to collect the facts bearing on the origin of it, both those which raise no difficulties and those which seem paradoxical.
Hail is ice, and water freezes in winter; yet hailstorms occur chiefly in spring and autumn and less often in the late summer, but rarely in winter and then only when the cold is less intense. And in general hailstorms occur in warmer, and snow in colder places.
Again, there is a difficulty about water freezing in the upper region.
It cannot have frozen before becoming water: and water cannot remain suspended in the air for any space of time. Nor can we say that the case is like that of particles of moisture which are carried up owing to their small size and rest on the iar (the water swimming on the air just as small particles of earth and gold often swim on water). In that case large drops are formed by the union of many small, and so fall down. This cannot take place in the case of hail, since solid bodies cannot coalesce like liquid ones. Clearly then drops of that size were suspended in the air or else they could not have been so large when frozen.