CONDITION OF INK WHEN FIRST PLACED ON PAPER--ITSMETAMORPHOSIS AND AFFINITIES--IGNORANCE OF THEFORGER AS TO ITS ORIGINAL ENVIRONMENT--TREATMENTOF OLD INK MARKS--HOW PAPER MAY DISCOLOR INK--THE USES OF ACID IN INK--VEHICLES TO HOLD INK PARTICLES AND PRESERVE THEM--INKSFIVE CENTURIES OLD DO PRESERVE THEIR GLOSS--SOME CAUSES OF INK DISINTEGRATION--WHENINK BECOMES IRRESPONSIVE TO THE ELEMENTS-DEMONSTRATED TRUTHS ABOUT INK CONSTITUENTS ANDCOLOR PHENOMENA--NATURAL EVOLUTION OF AN INK MARK--LENGTH OF TIME REQUIRED TO BECOME BLACK--FIRST INDICATIONS OF AGE--DISAPPEARANCEOF INK QUALITIES--ARTIFICIAL AGING OF INK--TESTSFOR IT AND HOW TO CONFIRM THEM--BLEACHING ANDREMOVAL OF INK FROM PAPER CRIMINALLY CONSIDERED--CHEMISTRY OF SUCH MARKS--THEIR RESTORATION-VARIATIONS IN METHODS WHICH CAN BE EMPLOYED.
ALL inks when first placed on paper are of course in a fluid state. Gradual evaporation of moisture causes a change not only in color but in the case of the iron and gall inks, in their chemical constitution, being immediately affected by their environment, whether due to the character of the paper on which they rest, the kind or condition of the pen used, or most important of all, the elements. Those who use the black inks and chemical writing fluids will have noticed these characteristics. The pale brown, blue or green as first written, and the gradual change after a short period to an approaching blackness, are reactions due largely to atmospheric conditions, the oxygen uniting with that for which it has affinity and instantly beginning with TIME to make its march, producing natural phenomena, which can be only superficially imitated but never exactly reproduced. When we further take into consideration that the forger cannot always know of the circumstances which surround the placing of original ink on paper and that be cannot manufacture the TIME which has already elapsed, it is not strange that attempted fraud can often be made evident and complete demonstrations given of the methods employed.
With the passage of time, the particles in some inks which are held together on the paper by gummy vehicles, commence to disintegrate and change from intense black to the brown color of iron rust, the "added" color which of itself is fugitive in character, soon departs; the vegetable astringent separating from the iron salt decays gradually and disappears and finally terminates in a mere stain or dust mark which can be blown off the paper. Sometimes, the written surface of such paper can be treated by carefully moistening it with a decoction of nut-galls or its equivalent in the presence of a weak acid, then if any iron be present, a measurable degree of restoration of color will ensue and remain for a short period.
Again, the discoloration of an iron ink may be due to the character of the paper; if of the cheaper grades and the bleaching compounds employed in their manufacture are not thoroughly washed out, then the ink not only begins to absorb oxygen from the atmosphere but the chlorine in the paper attacks it and the process of destruction is thereby hastened.
The introduction of acid into ink has two purposes, one to secure more limpidity, and the other to cause it to penetrate the paper and in this way bind together the constituent particles of both ink and paper. Most of the chemical writing fluids of this decade carry a superabundance of acid in their composition, which in time will burn through the paper and ultimately destroy it.
All tanno-gallate of iron inks require some vehicle to hold their particles in a state of suspension, otherwise there would be precipitation and such an ink could not be used. To meet this requirement a variety of gums are employed by manufacturers, gum acacia being the principal one. Its purpose is threefold--as before stated, to hold the ink particles in suspension--to prevent the ink from flowing too rapidly, and after drying WITHOUT blotting, to act as an envelope to encase the now fixed ink and prevent or interfere with its absorption of an excess of oxygen.
The longer these latter conditions obtain the longer will the ink retain its pristineness, its durability and permanence. The "time proved" ink-written specimens of five hundred years or more ago which continue to retain their original intense black color and "glossy" appearance, do not, however, yield any evidence of the use of vegetable gums in their composition.
Where such instances have been noticed the gloss is invariably missing. But, where ANY gloss is present, it was and is because of the employment of isinglass (fish-glue) as the vehicle to hold the ancient ink particles.
Hence the variations of color seen in ancient paper writings, as already stated, were due not only to possible imperfect admixtures of the component parts of the inks, but to the use of vegetable gums in their preparation. In the course of time these have been absorbed by moisture which hastened disintegration, causing a gradual disappearance of their original blackness and gloss and finally a return to the rusty color of oxidized iron.
It therefore follows, my observations and deductions being correct, the older a writing made with tanno-gallate of iron ink, where isinglass is the binder, and which has not been "blotted," the harder and more impervious and irresponsive it becomes to the action of the natural elements or of chemical reagents.