With an automobile averaging 25 to 35 miles per hour, almost any part of Europe, Russia excepted, was attainable in a day's journey. A flying machine of but equal speed would have no advantages, but if the speed could be raised to 90 or 100 miles per hour, the whole continent of Europe would become a playground, every part being within a daylight flight of Berlin. Further, some marine craft now had speeds of 40 miles per hour, and efficiently to follow up and report movements of such vessels an aeroplane should travel at 60 miles per hour at least. Hence from all points of view appeared the imperative desirability of very high velocities of flight. The difficulties of achievement were, however, great.
Weight of Lightest Motors.
As shown in the first lecture of his course, the resistance to motion was nearly independent of the velocity, so that the total work done in transporting a given weight was nearly constant. Hence the question of fuel economy was not a bar to high velocities of flight, though should these become excessive, the body resistance might constitute a large proportion of the total. The horsepower required varied as the velocity, so the factor governing the maximum velocity of flight was the horsepower that could be developed on a given weight. At present the weight per horsepower of feather-weight motors appeared to range from 2 1/4 pounds up to 7pounds per brake horsepower, some actual figures being as follows:
Antoinette........ 5 lbs.
Fiat.............. 3 lbs.
Gnome....... Under 3 lbs.
Metallurgic....... 8 lbs.
Renault........... 7 lbs.
Wright.............6 lbs.
Automobile engines, on the other hand, commonly weighed 12 pounds to 13 pounds per brake horsepower.
For short flights fuel economy was of less importance than a saving in the weight of the engine. For long flights, however, the case was different. Thus, if the gasolene consumption was 1/2 pound per horsepower hour, and the engine weighed 3 pounds per brake horsepower, the fuel needed for a six-hour flight would weigh as much as the engine, but for half an hour's flight its weight would be unimportant.
Best Means of Propulsion.
The best method of propulsion was by the screw, which acting in air was subject to much the same conditions as obtained in marine work. Its efficiency depended on its diameter and pitch and on its position, whether in front of or behind the body propelled. From this theory of dynamic support, Mr. Lanchester proceeded, the efficiency of each element of a screw propeller could be represented by curves such as were given in his first lecture before the society, and from these curves the over-all efficiency of any proposed propeller could be computed, by mere inspection, with a fair degree of accuracy. These curves showed that the tips of long-bladed propellers were inefficient, as was also the portion of the blade near the root. In actual marine practice the blade from boss to tip was commonly of such a length that the over-all efficiency was 95 per cent of that of the most efficient element of it.
Advocates Propellers in Rear.