登陆注册
14757200000002

第2章

假今天正十一月朔夜半,日在斗十度七百分度之四百八十。以章岁为母,朔月行定分九千,朔日定小余一万,日法二万,章岁七百,亦名行分法。今不取加时日度。问:天正朔夜半之时月在何处?(推朔夜半月度,旧术要须加时日度。自古先儒虽复修撰改制,意见甚众,并未得算妙,有理不尽,考校尤难。臣每日夜思量,常以此理屈滞,恐后代无人知者。今奉敕造历,因即改制,为此新术。旧推日度之术,巳得朔夜半日度,仍须更求加时日度,然知月处。臣今作新术,但得朔夜半日度,不须加时日度,即知月处。此新术比于旧术,一年之中十二倍省功,使学者易知)

答曰:在斗四度七百分度之五百三十。

术曰(推朔夜半月度,新术不复加时日度,有定小余乃可用之):以章岁减朔月行定分,余以乘朔日定小余,满日法而一,为先行分。不尽者,半法已上收成一,已下者弃之。若先行分满日行分而一,为度分,以减朔日夜半日所在度分,若度分不足减,加往宿度;其分不足减者,退一度为行分而减之,余即朔日夜半月行所在度及分也(凡入历当月行定分,即是月一日之行分。但此定分满章岁而一,为度。凡日一日行一度。然则章岁者,即是日之一日行分也。今按:《九章·均输篇》有犬追兔术,与此术相似。彼问:犬走一百走,兔走七十步,令免先走七十五步,犬始追之,问几何步追及?答曰:二百五十步追及。彼术曰:以兔走减犬走,余者为法。又以犬走乘兔先走,为实。实如法而一,即得追及步数。此术亦然。何者?假令月行定分九千,章岁七百,即是日行七百分,月行九千分。令日月行数相减,余八千三百分者,是日先行之数。然月始追之,必用一日而相及也。令定小余者,亦是日月相及之日分。假令定小余一万,即相及定分,此乃无对为数。其日法者,亦是相及之分。此又同数,为有八千三百,是先行分也。斯则异矣。但用日法除之,即四千一百五十,即先行分。故以夜半之时日在月前、月在日后,以日月相去之数四千一百五十减日行所在度分,即月夜半所在度分也)。

假令太史造仰观台,上广袤少,下广袤多。上下广差二丈,上下袤差四丈,上广袤差三丈,高多上广一十一丈,甲县差一千四百一十八人,乙县差三千二百二十二人,夏程人功常积七十五尺,限五日役台毕。羡道从台南面起,上广多下广一丈二尺,少袤一百四尺,高多袤四丈。甲县一十三乡,乙县四十三乡,每乡别均赋常积六千三百尺,限一日役羡道毕。二县差到人共造仰观台,二县乡人共造羡道,皆从先给甲县,以次与乙县。台自下基给高,道自初登给袤。问:台道广、高、袤及县别给高、广、袤各几何?

答曰:

台高一十八丈

上广七丈,

下广九丈,

上袤一十丈,

下袤一十四丈;

甲县给高四丈五尺,

上广八丈五尺,

下广九丈,

上袤一十三丈,

下袤一十四丈;

乙县给高一十三丈五尺,

上广七丈,

下广八丈五尺,

上袤一十丈,

下袤一十三丈;

羡道高一十八丈,

上广三丈六尺,

下广二丈四尺,

袤一十四丈;

甲县乡人给高九丈,

上广三丈,

下广二丈四尺,

袤七丈;

乙县乡人给高九丈,

上广三丈六尺,

下广三丈,

袤七丈。

术曰:以程功尺数乘二县人,又以限日乘之,为台积。又以上下袤差乘上下广差,三而一,为隅阳幂。以乘截高,为隅阳截积。又半上下广差,乘斩上袤,为隅头幂。以乘截高,为隅头截积。并二积,以减台积,余为实。以上下广差并上下袤差,半之,为正数,加截上袤,以乘截高,所得增隅阳幂加隅头幂,为方法。又并截高及截上袤与正数,为廉法,从。开立方除之,即得上广。各加差,得台下广及上下袤、高。

求均给积尺受广袤,术曰:以程功尺数乘乙县人,又以限日乘之,为乙积。三因之,又以高幂乘之,以上下广差乘袤差而一,为实。又以台高乘上广,广差而一,为上广之高。又以台高乘上袤,袤差而一,为上袤之高。又以上广之高乘上袤之高,三之,为方法。又并两高,三之,二而一,为廉法,从。开立方除之,即乙高。以减本高,余即甲高。此是从下给台甲高。又以广差乘乙高,以本高而一,所得加上广,即甲上广。又以袤差乘乙高,如本高而一,所得加上袤,即甲上袤。其上广、袤即乙下广、袤,台上广、袤即乙上广、袤。其后求广、袤,有增损者,皆放此(此应六因乙积,台高再乘,上下广差乘袤差而一。又以台高乘上广,广差而一,为上广之高。又以台高乘上袤,袤差而一,为上袤之高。以上广之高乘上袤之高,为小幂二。因下袤之高,为中幂一。凡下袤、下广之高,即是截高与上袤与上广之高相连并数。然此有中幂定有小幂一。又有上广之高乘截高,为幂一。又下广之高乘下袤之高,为大幂二。乘上袤之高为中幂一。其大幂之中又小幂一,复有上广、上袤之高各乘截高,为中幂各一。又截高自乘,为幂一。其中幂之内有小幂一。又上袤之高乘截高,为幂一。然则截高自相乘,为幂二,小幂六。又上广、上袤之高各三,以乘截高,为幂六。令皆半之,故以三乘小幂。又上广、上袤之高各三,令但半之,各得一又二分之一,故三之,二而一,诸幂乘截高为积尺)。

求羡道广、袤、高,术曰:以均赋常积乘二县五十六乡,又六因,为积。又以道上广多下广数加上广少袤,为下广少袤。又以高多袤加下广少袤,为下广少高。以乘下广少袤,为隅阳幂。又以下广少上广乘之,为鳖隅积。以减积,余三而一,为实。并下广少袤与下广少高,以下广少上广乘之,鳖从横廉幂。三而一,加隅幂,为方法。又以三除上广多下广,以下广少袤、下广少高加之,为廉法,从。开立方除之,即下广。加广差,即上广。加袤多上广于上广,即袤。加高多袤,即道高。

求羡道均给积尺甲县受广、袤,术曰:以均赋常积乘甲县上十三乡,又六因,为积。以袤再乘之,以道上下广差乘台高为法而一,为实。又三因下广,以袤乘之,如上下广差而一,为都廉,从。开立方除之,即甲袤。以广差乘甲袤,本袤而一,以下广加之,即甲上广。又以台高乘甲袤,本袤除之,即甲高。

假令筑堤,西头上、下广差六丈八尺二寸,东头上、下广差六尺二寸。东头高少于西头高三丈一尺,上广多东头高四尺九寸,正袤多于东头高四百七十六尺九寸。甲县六千七百二十四人,乙县一万六千六百七十七人,丙县一万九千四百四十八人,丁县一万二千七百八十一人。四县每人一日穿土九石九斗二升。每人一日筑常积一十一尺四寸十三分寸之六。穿方一尺得土八斗。古人负土二斗四升八合,平道行一百九十二步,一日六十二到。今隔山渡水取土,其平道只有一十一步,山斜高三十步,水宽一十二步,上山三当四,下山六当五,水行一当二,平道踟蹰十加一,载输一十四步。减计一人作功为均积。四县共造,一日役华。今从东头与甲,其次与乙、丙、丁。问:给斜、正袤与高,及下广,并每人一日自穿、运、筑程功,及堤上、下高、广各几何?

答曰:

一人一日自穿、运、筑程功四尺九寸六分;

西头高三丈四尺一寸,

上广八尺,

下广七丈六尺二寸,

东头高三尺一寸,

上广八尺,

下广一丈四尺二寸,

正袤四十八丈,

斜袤四十八丈一尺;

甲县正袤一十九丈二尺,

斜袤一十九丈二尺四寸,

下广三丈九尺,

高一丈五尺五寸;

乙县正袤一十四丈四尺;

斜袤一十四丈四尺三寸,

下广五丈七尺六寸,

高二丈四尺八寸;

丙县正袤九丈六尺,

斜袤九丈六尺二寸,

下广七尺,

高三丈一尺;

丁县正袤四丈八尺,

斜袤四丈八尺一寸,

下广七丈六尺二寸,

高三丈四尺一寸。

求人到程功运筑积尺,术曰:置上山四十步,下山二十五步,渡水二十四步,平道一十一步,踟蹰之间十加一,载输一十四步,一返计一百二十四步。以古人负土二斗四升八合,平道行一百九十二步,以乘一日六十二到,为实。却以一返步为法。除,得自运土到数也。又以一到负土数乘之,却以穿方一尺土数除之,得一人一日运动积。又以一人穿土九石九斗二升,以穿方一尺土数除之,为法。除之,得穿用人数。复置运功积,以每人一日常积除之,得筑用人数。并之,得六人。共成二十九尺七寸六分,以六人除之,即一人程功也。

求堤上、下广及高、袤,术曰:一人一日程功乘总人,为堤积。以高差乘下广差,六而一,为鳖幂。又以高差乘小头广差,二而一,为大卧堑头幂。又半高差,乘上广多东头高之数,为小卧堑头幂。并三幂,为大小堑鳖率。乘正袤多小高之数,以减堤积,余为实。又置半高差及半小头广差与上广多小头高之数,并三差,以乘正袤多小头高之数。以加率为方法。又并正袤多小头高、上广多小高及半高差,兼半小头广差加之,为廉法,从。开方立除之,即小高。加差,即各得广、袤、高。又正袤自乘,高差自乘,并,而开方除之,即斜袤。

求甲县高、广、正、斜袤,术曰:以程功乘甲县人,以六因取积,又乘袤幂。以下广差乘高差为法除之,为实。又并小头上下广,以乘小高,三因之,为垣头幂。又乘袤幂,如法而一,为垣方。又三因小头下广,以乘正袤,以广差除之,为都廉,从。开立方除之,得小头袤,即甲袤。又以下广差乘之,所得以正袤除之,所得加东头下广,即甲广。又以两头高差乘甲袤,以正袤除之,以加东头高,即甲高。又以甲袤自乘;以堤东头高减甲高,余自乘,并二位,以开方除之,即得斜袤。若求乙、丙、丁,各以本县人功积尺,每以前大高、广为后小高、主廉母自乘,为方母。廉母乘方母,为实母(此平堤在上,羡除在下。两高之差即除高。其除两边各一鳖腝,中一堑堵。今以袤再乘六因积,广差乘袤差而一,得截鳖腝袤,再自乘,为立方一。又堑堵袤自乘,为幂一。又三因小头下广,大袤乘之,广差而一,与幂为高,故为廉法。又并小头上下广,又三之,以乘小头高为头幂,意同六除。然此头幂,本乘截袤。又袤乘之,差相乘而一。今还依数乘除一头幂,为从。开立方除之,得截袤)。

求堤都积,术曰:置西头高,倍之,加东头高,又并西头上下广,半而乘之。又置东头高,倍之,加西头高,又并东头上下广,半而乘之。并二位积,以正袤乘之,六而一,得堤积也。

假令筑龙尾堤,其堤从头高、上阔以次低狭至尾。上广多,下广少,堤头上下广差六尺,下广少高一丈二尺,少袤四丈八尺。甲县二千三百七十五人,乙县二千三百七十八人,丙县五千二百四十七人。各人程功常积一尺九寸八分,一日役毕,三县共筑。今从堤尾与甲县,以次与乙、丙。问:龙尾堤从头至尾高、袤、广及各县别给高、袤、广各多少。

答曰:

高三丈,

上广三丈四尺,

下广一丈八尺,

袤六丈六尺;

甲县高一丈五尺,

袤三丈三尺,

上广二丈一尺;

乙县高二丈一尺,

袤一丈三尺二寸,

上广二丈二尺二寸;

丙县高三丈,袤一丈九尺八寸,

上广二丈四尺。

求龙尾堤广、袤、高,术曰:以程功乘总人,为堤积。又六因之,为虚积。以少高乘少袤,为隅幂。以少上广乘之,为鳖隅积。以减虚积,余,三约之,所得为实。并少高、袤,以少上广乘之,为鳖从横廉幂。三而一,加隅幂,为方法。又三除少上广,以少袤、少高加之,为廉法,从。开立方除之,得下广。加差,即高、广、袤。

求逐县均给积尺受广、袤,术曰:以程功乘当县人,当积尺。各六因积尺。又乘袤幂。广差乘高,为法。除之,为实。又三因末广,以袤乘之,广差而一,为都廉,从。开立方除之,即甲袤。以本高乘之,以本袤除之,即甲高。又以广差乘甲袤,以本袤除之,所得加末广,即甲上广。其甲上广即乙末广,其甲高即垣高。求实与都廉,如前。又并甲上下广,三之,乘甲高,又乘袤幂,以法除之,得垣方,从。开立方除之,即乙袤。余放此(此龙尾犹羡除也。其堑堵一,鳖腝一,并而相连。今以袤再乘积,广差乘高而一,所得截鳖腝袤再自乘,为立方一。又堑堵袤自乘,为幂一。又三因末广,以袤乘之,广差而一,与幂为高,故为廉法)。

假令穿河,袤一里二百七十六步,下广六步一尺二寸;北头深一丈八尺六寸,上广十二步二尺四寸;南头深二百四十一尺八寸;上广八十六步四尺八寸。运土于河西岸造漘,北头高二百二十三尺二寸,南头无高,下广四百六尺七寸五厘,袤与河同。甲郡二万二千三百二十人,乙郡六万八千七十六人,丙郡五万九千九百八十五人,丁郡三万七千九百四十四人。自穿、负、筑,各人程功常积三尺七寸二分。限九十六日役,河漘俱了。四郡分共造漘,其河自北头先给甲郡,以次与乙,合均赋积尺。问:逐郡各给斜、正袤,上广及深,并漘上广各多少?

答曰:

漘上广五丈八尺二寸一分;

甲郡正袤一百四十四丈,

斜袤一百四十四丈三尺,

上广二十六丈四寸,

深一十一丈一尺六寸;

乙郡正袤一百一十五丈二尺,

斜袤一百一十五丈四尺四寸,

上广四十丈九尺二寸,

深一十八丈六尺;

丙郡正袤五十七丈六尺,

斜袤五十七丈七尺二寸,

上广四十八丈三尺六寸,

深二十二丈三尺二寸,

丁郡正袤二十八丈八尺,

斜袤二十八丈八尺六寸,

上广五十二丈八寸,

深二十四丈一尺八寸。

术曰:如筑堤术入之(覆堤为河,彼注甚明,高深稍殊,程功是同,意可知也)。以程功乘甲郡人,又以限日乘之,四之,三而一,为积。又六因,以乘袤幂。以上广差乘深差,为法。除之,为实。又并小头上、下广,以乘小头深,三之,为垣头幂。又乘袤幂,以法除之,为垣方。三因小头上广,以乘正袤,以广差除之,为都廉,从。开立方除之,即得小头袤,为甲袤。求深、广,以本袤及深广差求之。以两头上广差乘甲袤,以本袤除之,所得加小头上广,即甲上广。以小头深减南头深,余以乘甲袤,以本袤除之,所得加小头深,即甲深。又正袤自乘,深差自乘,并,而开方除之,即斜袤。若求乙、丙、丁,每以前大深、广为后小深、广,准甲求之,即得。

求漘上广,术曰:以程功乘总人,又以限日乘之,为积。六因之,为实。以正袤除之,又以高除之,所得以下广减之,余又半之,即漘上广。

假令四郡输粟,斛法二尺五寸,一人作功为均。自上给甲,以次与乙。其甲郡输粟三万八千七百四十五石六斗,乙郡输粟三万四千九百五石六斗,丙郡输粟,二万六千二百七十石四斗,丁郡输粟一万四千七十八石四斗。四郡共穿窖,上袤多于上广一丈,少于下袤三丈,多于深六丈,少于下广一丈。各计粟多少,均出丁夫。自穿、负、筑,冬程人功常积一十二尺,一日役。问:窖上下广、袤、深,郡别出人及窖深、广各多少?

答曰:

窖上广八丈,

上袤九丈,

下广一十丈,

下袤一十二丈,

深三丈;

甲郡八千七十二人,

深一十二尺,

下袤一十丈二尺,

广八丈八尺;

乙郡七千二百七十二人,

深九尺,

下袤一十一丈一尺,

广九丈四尺;

丙郡五千四百七十三人,

深六尺,下袤一十一丈七尺,

广九丈八尺;

丁郡二千九百三十三人,

深三尺,

下袤一十二丈,

广一十丈。

求窖深、广、袤,术曰:以斛法乘总粟,为积尺。又广差乘袤差,三而一,为隅阳幂。乃置堑上广,半广差加之,以乘堑上袤,为隅头幂。又半袤差,乘堑上广,以隅阳幂及隅头幂加之,为方法。又置堑上袤及堑上广,并之,为大广。又并广差及袤差,半之,以加大广,为廉法,从。开立方除之,即深。各加差,即合所问。

求均给积尺受广、袤、深,术曰:如筑台术入之。以斛法乘甲郡输粟,为积尺。又三因,以深幂乘之,以广差乘袤差而一,为实。深乘上广,广差而一,为上广之高。深乘上袤,袤差而一,为上袤之高。上广之高乘上袤之高,三之,为方法。又并两高,三之,二而一,为廉法,从。开立方除之,即甲深。以袤差乘之,以本深除之,所加上袤,即甲下袤。以广差乘之,本深除之,所得加上广,即甲下广。若求乙、丙、丁,每以前下广、袤为后上广、袤,以次皆准此求之,即得。若求人数,各以程功约当郡积尺。

假令亭仓上小下大,上下方差六尺,高多上方九尺,容粟一百八十七石二斗。今已运出五十石四斗。问:仓上下方、高及余粟深、上方各多少?

答曰:

上方三尺,

下方九尺,

高一丈二尺;

余粟深、上方俱六尺。

求仓方、高,术曰:以斛法乘容粟,为积尺。又方差自乘,三而一,为隅阳幂。以乘截高,以减积,余为实。又方差乘截高,加隅阳幂,为方法。又置方差,加截高,为廉法,从。开立方除之,即上方。加差,即合所问。

求余粟高及上方,术曰:以斛法乘出粟,三之,以乘高幂,令方差幂而一,为实(此是大、小高各自乘,各乘取高。是大高者,即是取高与小高并)。高乘上方,方差而一,为小高。令自乘,三之,为方法。三因小高,为廉法,从。开立方除之,得取出高。以减本高,余即残粟高。置出粟高,又以方差乘之,以本高除之,所得加上方,即余粟上方(此本术曰:上下方相乘,又各自乘,并以高乘之,三而一。今还元,三之,又高幂乘之,差幂而一,得大小高相乘,又各自乘之数。何者?若高乘下方,方差而一,得大高也。若高乘上方,方差而一,得小高也。然则斯本下方自乘,故须高自乘乘之,差自乘而一,即得大高自乘之数。小高亦然。凡大高者,即是取高与小高并相连。今大高自乘为大方。大方之内即有取高自乘幂一,隅头小高自乘幂一。又其两边各有以取高乘小高,为幂二。又大小高相乘,为中方。中方之内即有小高乘取高幂一。又小高自乘,即是小方之幂又一。则小高乘大高,又各自乘三等幂,皆以乘取高为立积。故三因小幂为方,及三小高为廉也)。

假令刍甍上袤三丈,下袤九丈,广六丈,高一十二丈。有甲县六百三十二人,乙县二百四十三人。夏程人功当积三十六尺,限八日役。自穿筑,二县共造。今甲县先到。问:自下给高、广、袤、各多少?

答曰:

高四丈八尺,

上广三丈六尺,

袤六丈六尺。

求甲县均给积尺受广、袤,术曰:以程功乘乙县人数,又以限日乘之,为积尺。以六因之,又高幂乘之,又袤差乘广而一,所得又半之,为实。高乘上袤,袤差而一,为上袤之高。三因上袤之高,半之,为廉法,从。开立方除之,得乙高。以减甍高,余即甲高。求广、袤,依率求之(此乙积本倍下袤,上袤从之。以下广及高乘之,六而一,为一甍积。今还元须六因之,以高幂乘之,为实。袤差乘广而一,得取高自乘以乘三上袤之高,则三小高为廉法,各以取高为方。仍有取高为立方者二,故半之,为立方一。又须半廉法)。

假令圆囤上小下大,斛法二尺五寸,以率径一周三。上下周差一丈二尺,高多上周一丈八尺,容粟七百五斛六斗。今已运出二百六十六石四斗。问:残粟去囗、上下周、高各多少?

答曰:

一周一丈八尺,

下周三丈,

高三丈六尺,

去囗一丈八尺,

粟周二丈四尺。

求圆囤上下周及高,术曰:以斛法乘容粟,又三十六乘之,三而一,为方亭之积。又以周差自乘,三而一,为隅阳幂。以乘截高,以减亭积,余为实。又周差乘截高,加隅阳幂,为方法。又以周差加截高,为廉法,从。开立方除之,得上周。加差,而合所问。

求粟去囗,术曰:以斛法乘出斛,三十六乘之,以乘高幂,如周差幂而一,为实。高乘上周,周差而一,为小高。令自乘,三之,为方法。三因小高,为廉法,从。开立方除之,即去囗(三十六乘讫,即是截方亭,与前方窖不别)。置去囗,以周差乘之,以本高除之,所得加上周,即粟周。

假令有粟二万三千一百二十斛七斗三升,欲作方仓一,圆窖一,盛各满中而粟适尽。令高、深等,使方面少于圆径九寸,多于高二丈九尺八寸,率径七,周二十二。问:方、径、深多少?

答曰:

仓方四丈五尺三寸(容粟一万二千七百二十二斛九斗五升八合),

窖径四丈六尺二寸(容粟一万三百九十七石七斗七升二合),

高与深各一丈五尺五寸。

求方、径高深,术曰:十四乘斛法,以乘粟数,二十五而一,为实。又倍多加少,以乘少数,又十一乘之,二十五而一,多自乘加之,为方法。又倍少数,十一乘之,二十五而一,又倍多加之,为廉法,从。开立方除之,即高、深。各加差,即方径(一十四乘斛法,以乘粟为积尺。前一十四馀,今还元,一十四乘。为径自乘者,是一十一;方自乘者,是一十四。故并之为二十五。凡此方、圆二径长短不同,二径各自乘为方,大小各别。然则此堑方二丈九尺八寸,堑径三丈七寸,皆成方面。此应堑方自乘,一十四乘之;堑径自乘,一十一乘之,二十五而一,为隅幂,即方法也。但二隅幂皆以堑数为方面。今此术就省,倍小隅方,加差为矩袤,以差乘之为矩幂。一十一乘之,二十五而一。又差自乘之数,即是方圆之隅同有此数,若二十五乘之,还须二十五除。直以差自乘加之,故不复乘除。又须倍二廉之差,一十一乘之,二十五而一,倍差加之,为廉法,不复二十五乘除之也)。

还元,术曰:仓方自乘,以高乘之,为实。圆径自乘,以深乘之,一十一乘,一十四而一,为实。皆为斛法除之,即得容粟(斛法二尺五寸)。

假令有粟一万六千三百四十八石八斗,欲作方仓四、圆窖三,令高、深等,方面少于圆径一丈,多于高五尺,斛法二尺五寸,率径七,周二十二。问:方、高、径多少?

答曰:

方一丈八尺,

高深一丈三尺,

圆径二丈八尺。

术曰:以一十四乘斛法,以乘粟数,如八十九而一,为实。倍多加少,以乘少数,三十三乘之,八十九而一,多自乘加之,为方法。又倍少数,以三十三乘之,八十九而一,倍多加之,为廉法,从。开立方除之,即高、深。各加差,即方径(一十四乘斛法,以乘粟,为径自乘及方自乘数与前同。今方仓四,即四因十四。圆窖三,即三因十一。并之,为八十九,而一。此堑径一丈五尺,堑方五尺,以高为立方。自外意同前)。

假令有粟三千七十二石,欲作方仓一、圆窖一,令径与方等,方于窖深二尺,少于仓高三尺,盛各满中而粟适尽(圆率、斛法并与前同)。问:方、径、高、深各多少?

答曰:

方、径各一丈六尺,

高一丈九尺,

深一丈四尺。

术曰:三十五乘粟,二十五而一,为率。多自乘,以并多少乘之,以乘一十四,如二十五而一,所得以减率,余为实。并多少,以乘多,倍之,乘一十四,如二十五而一,多自乘加之,为方法。又并多少,以乘一十四,如二十五而一,加多加之,为廉法,从。开立方除之,即窖深。各加差,即方、径、高(截高五尺,堑径及方二尺,以深为立方。十四乘斛法,故三十五乘粟。多自乘并多少乘之,为截高隅积,即二廉,方各二尺,长五尺。自外意旨皆与前同)。

假令有粟五千一百四十石,欲作方窖、圆窖各一,令囗小底大,方面于圆径等,两深亦同,其深少于下方七尺,多于上方一丈四尺,盛各满中而粟适尽(圆率、斛法并与前同)。问:方、径、深各多少?

答曰:

上方、径各七尺,

下方、径各二丈八尺,

深各二丈一尺。

术曰:以四十二乘斛法,以乘粟,七十五而一,为方亭积。令方差自乘,三而一,为隅阳幂,以截多乘之,减积,余为实。以多乘差,加幂,为方法。多加差,为廉法,从。开立方除之,即上方。加差,即合所问(凡方亭,上下方相乘,又各自乘,并以乘高,为虚。命三而一,为方亭积。若圆亭上下径相乘,又各自乘,并以乘高,为虚。又十一乘之,四十二而一,为圆亭积。今方、圆二积并在一处,故以四十二复乘之,即得圆虚十一,方虚十四,凡二十五,而一,得一虚之积。又三除虚积,为方亭实。乃依方亭复问法,见上下方差及高差与积求上下方高术入之,故三乘,二十五而一)。

假令有粟二万六千三百四十二石四斗,欲作方窖六、圆窖四,令囗小底大,方面与圆径等,其深亦同,令深少於下方七尺,多於上方一丈四尺,盛各满中而粟适尽(圆率、斛法并与前同)。问上下方、深数各多少?

答曰:

方窖上方七尺,

下方二丈八尺,

深二丈一尺,

圆窖上下径、深与方窖同。

术曰:以四十二乘斛法,以乘粟,三百八十四而一,为方亭积尺。令方差自乘,三而一,为隅阳幂。以多乘之,以减积,余为实。以多乘差,加幂,为方法。又以多加差,为廉法,从。开立方除之,即上方。加差,即合所问(今以四十二乘。圆虚十一者四,方虚十四者六,合一百二十八虚,除之,为一虚之积。得者仍三而一,为方亭实积。乃依方亭见差复问求之,故三乘,一百二十八除之)。

假令有句股相乘幂七百六十五分之一,弦多于句三十六十分之九。问:三事各多少?

答曰:

句十四二十分之七,

股四十九五分之一,

弦五十一四分之一。

术曰:幂自乘,倍多数而一,为实。半多数,为廉法,从。开立方除之,即句。以弦多句加之,即弦。以句除幂,即股(句股相乘幂自乘,与句幂乘股幂积等。故以倍句弦差而一,得一句与半差之共乘句幂,为方。故半差为廉法,从,开立方除之。按:此术原本不全,今依句股义拟补十三字)。

假令有句股相乘幂四千三十六五分之囗,股少于弦六五分之一。问:弦多少?(按:此问原本缺二字,今依文补一股字,其股字上之囗系所设分数,未便悬拟,今姑阙之)。

答曰:弦一百一十四十分之七。

术曰:幂自乘,倍少数而一,为实。半少,为廉法,从。开立方除之,即股。加差,即弦。

假令有句弦相乘幂一千三百三十七二十分之一,弦多股一、十分之一。问:股多少?

答曰:九十二五分之二。

术曰:幂自乘,倍多而一,为立幂。又多再自乘,半之,减立幂,余为实。又多数自乘,倍之,为方法。又置多数,五之,二而一,为廉法,从。开立方除之,即股(句弦相乘幂自乘,即句幂乘弦幂之积。故以倍股弦差而一,得一股与半差囗囗囗囗囗为方令多再自乘半之为隅囗囗囗囗囗横虚二立廉囗囗囗囗囗囗囗囗囗囗囗倍之为从隅囗囗囗囗囗囗囗囗囗囗囗多为上广即二多囗囗囗囗囗囗囗囗囗法故五之二而一)。

案:此术脱简既多,法亦烦扰,宜云幂自乘,多数而一,所得四之,为实。多为廉法,从。立方开之,得减差,半之,即股(幂自乘,与勾幂弦幂相乘积等。令勾幂变为股弦并乘股弦差,故差而一,所得乃股弦并乘弦幂)。

假令有股弦相乘幂四千七百三十九五分之三,句少于弦五十四五分之二。问:股多少?

答曰:六十八。

术曰:幂自乘,倍少数而一,为立幂。又少数再自乘,半之,以减立幂,余为实。又少数自乘,倍之,为方法。又置少数,五之,二而一,为廉法,从。开立方除之,即句。加差,即弦。弦除幂,即股。

假令有股弦相乘幂七百二十六,句七、十分之七。问:股多少?

答曰:股二十六五分之二。

术曰:幂自乘,为实。句自乘,为方法,从。开方除之,所得又开方,即股(囗囗囗囗囗囗囗囗囗囗囗囗囗囗数亦是股囗囗囗囗囗囗囗囗囗囗囗囗为长以股囗囗囗囗囗囗囗囗囗囗囗囗得股幂又开囗囗囗囗囗囗囗囗囗囗囗股北分母常……)

假令有股十六二分之一,句弦相乘幂一百六十四二十五分之十四。问:句多少?

答曰:句八、五分之四。

术曰:幂自乘,为实。股自乘,为方法,从。开方除之,所得又开方,即句。

同类推荐
热门推荐
  • 轮回潜渊

    轮回潜渊

    轮回万载,演绎着一个灵魂不屈的抗争史,还是那句话,天地本棋局,沈渊抚额长叹,纵使向道之心不再坚定,纵使手中之剑失了锋芒,纵使肉身破碎,灵魂枯竭,万载的轮回路,磨平了昔日峥嵘的棱角,是否还能记得最初的意念,“我本平庸,但当我君临万界那一刻,便是平庸的我荡涤世间丑恶的时候”沈渊如是说,神光湛湛的双眸盯着无尽虚空的彼端,面色淡然,“相信我,这一世,我必杀你”
  • 小儿脏腑形证门

    小儿脏腑形证门

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 没有或许

    没有或许

    有一种喜欢叫一见钟情,有一种恋人叫命中注定,有一种默契叫我很想你,初见时那简单的一瞥,在他和她的心里种下了一种叫做爱情的种子
  • 僵约序曲

    僵约序曲

    高三女生凌可可,莫名其妙的得到一个八卦镜,每一个月初,只要凌可可许一个愿,八卦镜会给出相应的提示或者物品,在未来的一个月内会用到相应的道具实现愿望。在她许愿成为最美的女人后,阴差阳错的,被抓进了生物实验室,给她做人体改造!千钧一发之际,一个六岁小孩闯进来救了她,更加夸张的是,她居然是这个小孩的妈妈,而且能经过DNA验证的,可怜她十七岁的花季少女,除了暗恋过一个同班同学,可是连初吻都没给出去呢。好在这个宝贝儿子好养,一路不仅照顾她这个妈妈,还好几次保护她........
  • 仙剑缘之剑灵

    仙剑缘之剑灵

    QQ群397199055在杨凡失去雪儿后,不久,便和郡主熬过不少磨难,终于走到了一起,成为一对相爱的恋人,因郡主的父王反对二人在一起,对杨凡痛下杀手,在那一刹那,女主用身体为其挡下了那剑,在郡主为了求杨凡的那一刻,就知道自己会死在自己的亲爹手上,杨凡在那一瞬间,发了疯,动用了“燃烧生命”,回到过去,再次和女主牵手,完成彼此之间还没有完成的承诺,虽然只是有限的时间,但是,还是完成了彼此的愿望,最后,在阴间,开始了一段恋情的故事……
  • 暴走的李白

    暴走的李白

    曾经为诸多大咖假唱的完美嗓音者,李白,在揭发诸多天王天后的虚伪后,被人砍死!却意外发现自己穿越到了一个与地球平行的世界!而他,正要上台参加海选...
  • 无敌古武

    无敌古武

    方河,是神一般的男人,在地球之上,达到了力量巅峰。在另一个世界,他依然要站到力量巅峰,把敌人的女儿抢过来暧床,把敌人的宝物抢过来收藏,把龙凤从天上斩下来吃掉!把妖魔从地底下拉上来当仆人!
  • 缘定:不负时光不负你

    缘定:不负时光不负你

    十年前,孤儿院,他们相识相知;十年后,孤儿院,他说:“点点,我不良善,也没追过女孩谈过恋爱,但我绝不负时光,更不负你。”天,这么字字诛心真的好吗?点点同志受不了席律师这样的攻击啊…
  • 第三小姐初号机:冷面医师

    第三小姐初号机:冷面医师

    人形杀器、冷面修罗、杀人不眨眼……让人怎样联想到那绝色风华的少?可她就是。她是被丞相宠坏了的娇蛮小姐,空有容貌和天赋,却在一个雨夜,带着满身的伤痕,就此沉默。“我的心早就是钢铁了。”年方十五的她,眼底竟有一丝他看不懂的忧伤。灵魂空间,身世之谜,时空裂痕,一切都犹如一根根隐形的线,纠缠在她的身上。但是没有关系,总有一个他陪在她的身边。“你是谁?”“你的夫君。”
  • 背叛的罪

    背叛的罪

    一个是被属下背叛的叛军统领,最后落魄成为他人眼中的“疯子”,靠着一本偷来的“死亡契约”,重新密布着自己的计划。一个是被胡诌理由卷入的无辜国家的年轻国王,最后不仅国破山亡,还沦落成人人喊打的“通缉犯”。一个是背负着家族的命运,命运一波三折,倾城倾国的女子,最后会选择一世安稳,还是选择走上复仇。契约,它不过是获得一种力量的强大途径,但却要付出的是生命和自由的代价。魔法,它不过是整个大陆上必须学的一种自卫手段,竟成为了“为一点破大点事”,互相杀戮的武器。在这个神奇的魔法大路上,比恶魔更可怕的是一个被“千刀万剐”过的心脏。魔幻.奇幻.玄幻类.微恐怖.微悬念.喜欢的话,就收藏吧~后面会越来越有意思,