登陆注册
10151600000004

第4章 物质及其性质(1)

物质是什么

我们的生活中到处存在着物质,如课本、铅笔、喝的水、穿的衣服、昆虫、岩石等。这些都是你能触摸到的,还有一些物质是你触摸不到的,像空气。分子是组成物质的基本单位,分子是由原子构成的。物质分为无生命的物质,如海底的礁石;有生命的物质,如鸟。

岩石宇宙中大多数物质是无生命的,也就是说它们既不会生长也不能移动。例如我们生活的地球是由岩石构成的,岩石就是无生命的物质。

地球上生活着许许多多的生物,包括各种植物和动物。虽说蝴蝶与岩石截然不同,但是两者都由原子构成。由于结合的方式不同,才使形态各异。

互相转化的三种物态

在一定的条件下,物体可以分别出现固态、液态和气态这三种不同的状态。人们把这种现象叫做物态转化。

让我们来看看物态转化的有趣现象。在冬季,取一大块冰放在烧杯里,加热后冰就消失了,变成了一些水。盖上杯盖再加热,水就变成蒸气了。这个实验说明,水在热的作用下,会由固态(冰)转化为液态(水),又由液态转化为气态(水蒸气)。

但是,如果把程序颠倒过来,就会发生另外的物态变化。先把收集的水蒸气放在一个烧瓶里,水蒸气冷却后又变成了水,水继续冷却下去又会变成冰。冷却也是一种热作用,说明由气态到液态,又由液态到固态的转化。

在热学中,我们把固态变为液态的过程叫做熔化;物体由液态转化成气态的过程叫做气化(沸腾);液态变为固体的过程叫做凝固。沸点和液化点的温度相同,熔点和凝固点的温度也是一样的。

在物态的转化过程中,汽化、熔解时必须吸收热量,而液化、凝固时会散发热量。

物态的变化有着它的规律,但有时也并不总是按照固态、液态、气态,或者气态、液态、固态的顺序进行的,也会在固态和气态之间直接进行。在热学上,物体由固态直接转化为气态气体没有固定的体积和形状、叫做升华;物体由气态直接转化为固态,叫做凝华。

例如,在严寒的冬天,潮湿的衣服挂在室外,由于气温在0℃以下,湿衣服上的水很快就结成冰。尽管这些冰不会熔化,但是时间长了,衣服还是会干的,这就是因为冰升华成水气跑掉了。

再如,在深秋的早晨,我国大部分地区会出现霜降,这是因为在温度下降到0℃以下时,水蒸气直接凝固成霜,这是一种凝华现象。

在生产中,人们很早就学会了利用升华和凝华方法来提炼化工产品、药品及其他物质了。如我国古代的“炼丹”术,就是最早通过化学方法制成结晶的红色硫化汞的。

汽化有两种形式,蒸发和沸腾。

水的形状由水杯的形状来决定液体表面的汽化现象叫蒸发。蒸发得快慢跟温度和外面的气流速度有关。温度越高,风力越大,蒸发也越快。在日常生活中,蒸发现象随处可见。刚下完雷阵雨,马路上很快就干了;铜钱以固体的形式存在湿衣服晾在阳台上,或通风的地方,不用两天就干;放在碗里的水,时间长了会悄悄不见了,等等,这些都是水的蒸发现象。

液体达到一定温度时,不仅从表面,而且也从内部进行剧烈的汽化现象,这就叫沸腾。液体沸腾时的温度叫沸点。

液体的沸腾跟压强有关。在通常情况下,即一个大气压下,水的沸点和冰点分别是100℃和0℃。气压变化,沸点与冰点也随之变化。高山上的大气压低于平地上的大气压,因此高山上液体的沸点比平地要低些。水的沸点在海平面附近为100℃,在3000米高的地方,大约为90℃,在8500米高山上,大约为72℃。所以,在高山地区用普通锅是很难把饭煮熟的。

相反,增大压强,液体的沸点会升高。

17世纪,法国的医生兼物理学家和机械师丹尼斯·帕平,在“液体的沸点随大气压减小而降低”的启发下,制造了世界上第一口压力锅。锅体有两层,中央摆有内锅,食物放在内锅里。加热以后,蒸气跑不出来,锅内气压升高,水的沸点也升高了,食物就熟得快,可以节省时间和燃料。

现在,压力锅已进入千家万户,给人们生活带来极大便利。

在物态变化中,气体的液化和凝固是最困难的。这是因为它们的液化点和凝固点都很低。但是,人们发现在高压的条件下,气体的液化和凝固很容易做到。

物态的变化是一种有趣的现象。这种变化在生活中是很常见的。

由上可以看出,物态的变化与生活息息相关,给我们的生活带来了许多方便。正确认识并合理利用物态变化的各种原理定会给人类创造更多的便利。

物质的性质

一种物质具有什么样的性质,是由它的内部结构决定的,也就是由分子或原子的排列结构决定的。铅笔芯和金刚石都是由碳原子组成的,为什么前者比较软,后者却很硬呢?这是因为在这两种物质中,碳原子的排列方式不一样。

质量、密度与体积

质量是度量物体慢性大小和引力作用强弱的物理量。密度是物体的质量和其体积的比值,体积是物体所占的空间量。质量与密度和体积都有关系。质量一样的木块、橡胶和铅,在密度和体积上有很大区别。木块的体积最大,密度最小;铅的体积最小,密度最大。

质量和重量

质量是物体中物质的多少,重力是地球对物体吸引的力,而重量就是物体所受重力的大小。重力的单位是牛顿,质量的单位是千克。金属物和沙的质量相同,在重力加速度一定的条件下它们具有相同的重量。

弹性

橡胶有一种有趣的特性:你拉它,它就伸长,你一放手,它又缩回原状。这种特性称为弹性。大多数材料,甚至包括金属都具有弹性。弹力球具有比较强的弹性,它们是由橡胶做成的。

脆性

在常温下,玻璃是脆性的物质。而另一些材料,如黏土,在焙烧之前是弹性的,但在窑里烧制后就变脆了。

可塑性

如果你按一下面团、油灰那样的材料,它们就会变形而且不再恢复原状。这种材料称为可塑性材料。物质具有展性和延性两种可塑性。展性金属能锤打成薄片,延性金属能抽成细丝。

屋檐下的冰柱

下雪以后,当屋顶上还覆盖着厚厚的白雪,人们常常能发现,屋檐下背阴处挂着一根根粗细不一的小冰柱。这些冰柱是怎样形成的呢?

在雪后天晴的日子里,积雪会吸收太阳光的能量而开始熔化,但此时空气温度仍可能还处于0℃以下。人们常常感到“下雪不冷熔雪冷”,就是这个道理。

如果空气温度处于-1~-2℃,屋顶上向阳的积雪能直接受到太阳的照射,就会首先熔化。当熔化的雪水沿屋檐流下时,屋檐的背阴处由于背着太阳,周围空气温度仍处于冰点以下,流下来的雪水自然又会凝固起来,在水滴还没有来得及落地前就结成了冰。一滴、两滴、三滴……接连不断的水滴凝在一起,就形成了挂在屋檐下的小冰柱。

结在水面上的冰

水会结冰,这是自然界中常有的现象。仔细观察后你可以发现,冰总是结在水的表面上。在北方严寒的冬季,河流或湖泊表面常常被厚厚的冰层覆盖着,即使到了初春化冻季节,水面上还能见到一些浮冰随河水漂流。

由于水的表面直接和外界空气接触,因此当外界温度很低时,水的表面首先开始冷却。冷却的水密度变大,就会下沉;而底部温度较高的水密度较小,又会上升。水的这种上升和下沉的现象就是对流。然而,水这种物质有一个与众不同的“怪脾气”,那就是当外界温度冷却到4℃的时候,水的密度最大,如果外界温度继续冷却,水的密度反而会有所减小,这时,水的对流现象不再发生。

如果外界温度继续下降到0℃,表面的水便开始结冰。水在结冰时,大约要增大十分之一的体积,从而导致冰的密度比水小。因此,凝固的冰块总是浮在水的表面上。由于这时没有了对流,表面虽然已经冷到0℃,而底部的水仍可以继续保持在4℃左右。

正是由于水的这种特性,人们在冰天雪地的季节里,仍可以凿开河面的冰层,在水下捕到活蹦乱跳的鱼。

雪球越滚越大是怎么回事

在下雪的季节里,和小伙伴一起玩滚雪球是一项很有趣的游戏。你可以先捏一个小雪球,然后推着这个小雪球在雪地上滚呀滚呀,这个小雪球就会越滚越大,滚成一个大大的雪球。

雪球会越滚越大,常常被人们解释为:雪球是依靠黏着力的作用,在滚动过程中把地上的雪粘在一起而造成的。实际情况并不完全如此,在严寒的冬天,雪球和地上的雪片本身都不潮湿,它们之间没有多大的黏附作用。那么雪球越滚越大的主要原因到底是什么呢?

原来,冰雪只有在标准大气压条件下,才会在0℃开始熔化。科学实验证明,当冰受到的压强增大,它的熔点就会相应降低。当压强增大到标准大气压的135倍时,冰雪在-1℃时就可以熔化。正是由于冰雪的这种物理特性,导致了雪球在滚动过程中越滚越大。

当我们一开始把疏松的雪捏紧时,加大了雪片之间的压力,雪的熔点下降,在室外低于0℃的条件下,雪也会熔化为水。但是,一旦取消这种压力,水在低于0℃的温度下,又会重新结冰。这样,将手中的雪一捏一松、一捏一松,雪片就捏成了一个雪球。当雪球在地面上滚动时,被雪球压着的雪片也会先熔化,再结冰,并黏附在雪球上。这样随着雪球的滚动,在雪球经过的地面上,雪片就越来越多地黏附在雪球上,雪球就越滚越大了。

鸡蛋在水中沉底而在盐水中悬浮

把鸡蛋放入水中,就等于增加了和鸡蛋同体积的那部分水。把增加的那部分水取出来测其重量,就会发现这些水的重量比鸡蛋要轻。

把鸡蛋浸在食盐水中后,再测量和鸡蛋同体积的食盐水,这些食盐水比鸡蛋要重。

鸡蛋与同体积的水或食盐水相比,分量要是轻就悬浮,分量要是重就下沉。

一般来说,物体在水中是悬浮还是下沉,取决于物体的比重。所谓比重,是指同体积的物体和水的重量的比值,比重大于1的物体在水中就下沉,小于1的就上浮。

不倒翁

大家都有这样的经验:平放的砖头很稳定,把砖头竖立起来就容易翻倒;瓶子里装了半瓶水很稳定,空瓶子或是装满水的瓶子就比较容易翻倒。从上面两个事例来看,要使一个物体稳定,不易翻倒,需要满足两个条件:第一,它的底面积要大;第二,它的重量要尽可能集中在底部,也就是说,它的重心要低。物体的重心可以认为是所受重力的合力作用点。

同类推荐
  • 飞碟追踪百科(科学探索百科)

    飞碟追踪百科(科学探索百科)

    人类社会和自然世界是那么丰富多彩,使我们对于那许许多多的难解之谜,不得不密切关注和发出疑问。人们总是不断地去认识它,勇敢地去探索它。虽然今天科学技术日新月异,达到了很高程度,但对于许多谜团还是难以圆满解答。人们都希望发现天机,破解无限的谜团。古今中外许许多多的科学先驱不断奋斗,一个个谜团不断解开,推进了科学技术的大发展,但又发现了许多新的奇怪事物和难解之谜,又不得不向新的问题发起挑战。科学技术不断发展,人类探索永无止境,解决旧问题,探索新领域,这就是人类一步一步发展的足迹。
  • 青少年应该知道的人类与地球

    青少年应该知道的人类与地球

    本书从地球起源入手,系统地阐述了地球的基础知识、形态特征、地球位置形成以及和其它星球的关系,并且还介绍了地球的灾害,地球的未来等。
  • 青少年应该知道的木材

    青少年应该知道的木材

    本书介绍了世界主要林木树种及珍贵木材特性,同时还介绍了人们对林木资源的科学、高效的开发利用重点阐述了木材的生物学特性以及基本概念、作用原理和处理方法及维护自然生态平衡等。
  • 蓬勃发展的现代农业(科普知识大博览)

    蓬勃发展的现代农业(科普知识大博览)

    要想成为一个有科学头脑的现代人,就要对你在这个世界上所见到的事物都问个“为什么”!科学的发展往往就始于那么一点点小小的好奇心。本丛书带你进行一次穿越时空的旅行,通过这次旅行,你将了解这些伟大的发明、发现的诞生过程,以及这些辉煌成果背后科学家刻苦钻研的惊心时刻。
  • 青少年应该知道的摄影

    青少年应该知道的摄影

    本书带我们走入图像的世界——摄影。主要介绍了摄影的基本概念、工作原理、分类、摄影器材及其摄影技巧等知识,语言生动,科学实用,富有情趣。利用摄影这一现代生活的图像工具,科学艺术地记忆美好生活,提高了人们的生活质量。希望本书能让广大的青少年朋友了解和掌握更多的摄影知识。
热门推荐
  • 拯救计划

    拯救计划

    周舟的书稿被同学车闯抢走了,要是书稿被班主任看到,那就麻烦了,因为书稿里写了不少她的“光辉事迹”呢。周舟家的宠物们立刻总动员起来,他们疯狂飙车,夜遇藏獒,勇探鬼楼……这帮疯狂的家伙最后能完成这个疯狂的拯救计划吗?
  • 我的吸血表妹

    我的吸血表妹

    月光之下,少女伏在钟鸣的肩膀上,轻轻的咬在他脖子上,鲜血顺着少女的嘴角流下。良久,他才抬起头,钟正南脖子上的伤口开始收缩,很快恢复如此。少女脸上的表情变得稍微柔和。“你应该知道,我们的命运已经紧紧的联系在一起,除非其中一人身死。”“我知道……”钟鸣幽幽得说道。(这不是吸血鬼小说,而是关于都市,关于武道的轻松小说)
  • 妃:

    妃:

    因为报仇,她悄然入宫,一朝为妃,他的爱,却忽真忽假
  • 枫之落叶

    枫之落叶

    花落叶凋零的季节,能不能别离开,当叶枫回首,洛芝已经没有在那原地等待了。而她含着泪,“保重,”也许这是挥手告别青春的最后一句话了吧。
  • 大道修仙记

    大道修仙记

    往往渐生情,日暮降西归,惜亦君已别,叹世同君泪~上古符敕重现人间,看一帮满怀天赋仙法的孩子们如何拯救世间疾苦。
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 穿越女尊之官人笑纳

    穿越女尊之官人笑纳

    阴差阳错李琳琅来到一个奇妙的世界!这里上下五千年历史并未记载!阴阳互调,女主外男主内的女尊王朝!重生也罢,穿越也罢,她将一切看淡,只想带着自己心尖尖的那个人走想美好。且看她如何解决一个又一个的难题,带着夫郎奔小康~有美食,宫斗~【本文一对一,喜欢可加入收藏!】友情推荐朋友写的文文:腹黑王爷,绝宠医妃
  • 最胜问菩萨十住除垢断结经

    最胜问菩萨十住除垢断结经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 天可汗李世民之血色玄武门

    天可汗李世民之血色玄武门

    本书以玄武门之变为线展开隋末唐初生动的历史画卷,分为五篇。前奏篇介绍唐朝开国皇帝李渊,讲述隋末乱世中李氏父子逐渐起家的过程,为之后兄弟争位埋下伏笔;开端篇描述秦王党和太子党的形成,从此双方壁垒分明;发展篇描述双方的矛盾如何随着一个个“小事件”——“刘黑闼事件”、“杨文干事件”而激化,最终演变成针锋相对;高潮篇是本书的核心“玄武门之变”的发生;最后的结局篇点出宫变之后两党参与者们最后的归宿与命运。
  • 后宫戚妃传

    后宫戚妃传

    命运从一开始便定好了一切,躲不开的就勇敢的去面对。戚家的女儿,终究逃不过这一片四方的天。一场无法避免的女人之间的较量,至此展开。豆蔻年华,花容月貌,也终归于那一捧黄土。繁花缭乱,百花争鸣。几年此起彼伏,后位终究鹿死谁手。从王府庶妃到高高在上的皇贵妃,命运之神还能眷顾多久?她,戚照,已经没什么可失去的了。年少时的誓言,还作数吗?曾经的守护,难逃不过一句戏言。三段令人为之动容的情意,不止于爱情。#花落繁华,达到巅峰,亦止于巅峰#