可是,天文学家们花了几十年时间都没有找到这颗神秘的火神星。爱因斯坦用广义相对论最终揭开了火神星之谜。原来,由于太阳的巨大质量,使周围时空发生了弯曲,水星是离太阳最近的一个星,受这种影响最大,根据广义相对论计算,恰好每个世纪应该有43秒的近动,根本不存在什么火神星。其他行星离太阳较远,那里的时空性质相对改变较小,因此仍可以用万有引力定律较好描述。
火神星的错误预言暴露了牛顿万有引力的缺陷,证明了广义相对论是正确的。
广义相对论的第二个验证是光线在引力场中的偏移。1916年,英国天文学家爱丁顿得到了一本《广义相对论基础》,他一眼就看出了这篇论文的伟大意义。在其中,爱因斯坦预言光线在经过太阳边缘时会发生1.7秒的偏转。为了验证这一理论,爱丁顿苦苦等了4年,终于等到了1919年5月29日的日全食机会,这就是本文开场那一幕。
广义相对论的第三个验证是引力频移。爱因斯坦预言,在引力场中,光的谱线将向红端移动。因为引力场越强,时空弯曲越厉害,时间就会变慢,光的频率也就会变慢,而红光是可见光中频率最低的,所以,光的谱线要向红端移动。1925年,美国天文学家亚当斯对天狼伴星光谱线的观测证实了引力频移。
60年代以来,脉冲星的发现、黑洞的探索、河外星系的红移、大爆炸宇宙理论的提出,都表明了广义相对论是指导人们认识世界的有力武器。
但是,爱因斯坦当年预言的引力波,至今还没有找到,相对论是否真正是引力之谜的谜底还有待科学的验证。可以肯定的是,广义相对论把人们对引力的认识大大提高了一步。
爱因斯坦的预言
当科学界还在努力理解狭义相对论和广义相对论时,爱因斯坦已经对这两种理论感到不满意了。虽然狭义相对论把经典力学与电磁理论从基础上统一起来了,广义相对论又进一步把相对性原理从惯性系扩大到非惯性系,但是引力和电磁两大相互作用却没有统一起来,而爱因斯坦追求的目标是世界的统一性。
爱因斯坦又向新的更高目标攀登了。在完成广义相对论之后,他立即着手建立统一场论,试图把引力场与电磁场统一起来。他把建立统一场论看作是发展相对论的第三阶段。
爱因斯坦从1923年开始到1955年去世,把后半生的主要精力都投入到建立统一场论的工作中,但是最终没有成功。
不是统一场论的大方向错了,也不是爱因斯坦的个人智慧不够,而是客观历史条件还不具备,还缺乏经验和事实作为向导。
狭义相对论的建立依据了两个基本事实,即相对性原理和光速不变原理,广义相对论有惯性质量和引力质量相等的基本事实为依据。统一场论却没有事实作根据,爱因斯坦只能作一些数学上的简单努力,因而失败了。
当爱因斯坦孤独一人、埋头于统一场论研究的时候,从他身边奔驰而过的是量子物理学、原子物理学、固体物理学的时代洪流。许多科学家对爱因斯坦脱离了物理学的发展主流深感惋惜,但爱因斯坦却始终坚持对统一场论的研究是有意义的。他在晚年时对他的老朋友索洛文说:“我完成不了这项工作了,它将被遗忘,但是将来会被重新发现。”
历史正像爱因斯坦所预言的那样。
人们后来发现,宇宙中不只有电磁相互作用和引力场相互作用,还有强相互作用和弱相互作用。1961年到1968年,物理学家格拉肖、温伯格和萨拉姆提出了弱相互作用和电磁相互作用的统一模型,并得到了实验的验证,他们因此获得了1979年诺贝尔物理奖。
四种相互作用的大统一研究,今天重新成为理论物理研究的前沿课题之一,人们正在朝着大统一的目标不懈地努力。
6.湍流理论的发现
钱学森、郭永怀、钱伟长、林家翘等人的名字,海内外中国同胞都非常熟悉,他们都是世界知名的科学家。其中钱学森、郭永怀主持了我国航天事业和核弹、导弹的研制,为中国科学技术的发展作出了巨大的贡献。而这几位科学家全都师出于一位科学家,他就是西奥多·冯·卡门(1881~1963)。冯·卡门,美国航空工程学家,开创了数学和基础科学在航空、太空和其他技术领域中的应用,从而获得美国总统授予的第一枚国家科学勋章)。
1963年2月18日上午,瑞雪初晴,晶莹的雪片在阳光下闪出奇异的光芒,粉妆玉砌般的积雪把大地变幻成银色的世界。美国白宫玫瑰园里宾客云集,这是华盛顿难得的雪后晴天。美国第一枚“国家科学勋章”的颁发仪式即将在这里隆重举行。
美国自建国以来,涌现出众多的科学大师,各级政府部门和民间团体曾颁发过无数科学奖章。然而,由美国总统代表国家亲自颁发的科学勋章,却还是头一次。获得这一崇高荣誉的就是现代航空大师西奥多·冯·卡门。
军乐队奏起了欢迎曲,宾客们急切地将目光转向通往白宫的礼仪门,人们都想先睹获奖者的风采。门开了,卡门和美国总统并肩步入白宫,向玫瑰园走来。
八旬高龄的冯·卡门,由于患有严重的关节炎,在走下高高的台阶时,显得力不从心、步履蹒跚。年轻的美国总统赶忙上前搀扶他,老人点头报以感激之情,轻轻地摆脱了总统伸出的手,淡然一笑说:“总统先生,下坡行路的人无需搀助,惟独举足高攀的人,才求一臂之力。”
当总统把金灿灿的勋章挂在卡门老人的脖子上时,人群中响起了热烈的掌声,军乐队高奏贝多芬不朽的名曲《英雄颂》。
白宫授勋仪式之后不久,老人的心脏衰竭,终于在82岁寿辰的前5天,离别了人间。这位一代传奇人物结束了他多彩的人生,但是,在那日益增多的飞行工具上,却铭刻着他征服天空的不朽业绩。
卡门1881年5月11日生于匈牙利,父亲是教育学教授,他受到了良好的早期教育。儿童时代的卡门,很早就显露出数学天赋。卡门的数学天赋着实使父亲感到惊奇,但是卡门的父亲从全面教育出发,不得不采取措施,抑制他在数学方面的智力发展,让他多学些人文科学知识。
9岁那年,卡门进入了被人们誉为“明星摇篮”的匈牙利明达中学。17岁的卡门,作为一名中学优等生,进入了当时匈牙利惟一的工科大学约瑟夫皇家工艺大学。25岁的卡门争取到了匈牙利科学院的奖学金后,便前往当时世界的科学圣地——哥廷根。
20世纪初,哥廷根的人口不足3万,然而,这是一座智力之城、学院之城,哥廷根在近代科学文明中颇有名望。古老的建筑,迷人的花园,幽静的街巷,一派静悄悄地庄严气氛,世纪的墙垣环抱着郁郁葱葱的林阴,哥廷根大学哥特式建筑的尖形塔,更使这里具有中世纪修道院的风格。
哥廷根大学是1734年创建的一所古老的普鲁士大学,当时是世界理论科学的中心。哥廷根也是近代流体力学的发祥地,被誉为“空气动力学之父”的路德维希·普朗特此时正在这里主持工作。
普朗特十分注意研究从复杂的工程问题中抽出基本的物理过程,再用简化的数学方法加以分析,这与卡门的想法十分吻合。
在普朗特的指导下,卡门利用哥廷根良好的实验条件,对一系列机械工程问题进行了研究。这为他日后的飞机结构设计,提供了重要的技术保障。
1903年,卡门通过了博士学位答辩,而后赴巴黎学习考察。不久,普朗特从哥廷根寄邀请信,要卡门回去担任实验室的助手,参加哥廷根第一个风洞的筹建及“齐柏林号”飞艇的设计。卡门愉快地接受了这一邀请,从此他开始了作为航空科学家的生涯。
哥廷根风洞是为“齐柏林号”飞艇设计服务的;卡门协助普朗特完成了德国第一批空气动力学实验。同时,他还担任力学课的教员。哥廷根的学习、研究和生活对于卡门说来是十分珍贵的。
当时,一批科学明星荟萃于哥廷根。卡门置身于这些科学大师之中,眼界大开。尤其是希尔伯特与克莱因这两位各有所长的数学大师,对卡门产生了深远影响,使卡门横跨两个基本学科——纯粹数学和应用数学。
卡门投入科学研究初期,正是物理学的革命时期。放射性的发现正在揭开原子奥秘的帷幕。
1911年到1921年间,普朗特正在研究边界层分离现象。他设计了一个水槽,用以观察流体经过圆柱体后面的分离现象。水槽里的水流不断发生摆动,普朗特对此并不注意。卡门思想敏捷,善于洞察事物本质,当他插手这一实验之后,立即加以深入研究。
实验显示,流水在圆柱后形成两排交叉的涡旋。卡门对此进行了数学分析,从理论上证明只有交叉排列的涡旋才是稳定的。他在三个星期内完成了两篇出色的论文,这两篇论文成为流体力学中一次重大发现的标志。
流体经过一个障碍物,会在它后面留下两排交叉的涡旋,这一现象早已为人们所知,但是,卡门第一次从理论角度阐明了这一现象的实质。由于这两排交叉的涡旋好像是大街两旁的两排街灯,于是人们把这一现象叫做“卡门过街”。
在人类的建筑史上,因忽视“卡门过街”的作用,曾发生过一起惊心动魄的事件。事情是这样的:在美国西雅图附近有一座横跨塔科马海峡的大桥,它是一位著名建筑师设计的“艺术杰作”。1940年11月7日,8级狂风大作,在强烈的“卡门过街”的作用下,大桥发生了急剧的扭曲、振动,结果在不到一个小时崩塌殆尽。人们最终意识到建筑设计必须考虑“卡门过街”的效应,因为一切建筑物都处于空气这一流体之中,风速过快时都会产生“卡门过街”现象。