登陆注册
6369200000011

第11章 开天辟地近代化学的奠基人波义耳(11)

19世纪中叶以后,人们已不再局限于测定、研究天体的视位置和视运动(天体测量学),也不再局限于研究天体的力学运动(天体力学)了,而是发展到研究天体的形态、结构、化学组成、物理状态和演化规律,这便是天文学中的一个新分支——天体物理学。进入20世纪以后,天体物理学从襁褓时期进入蓬勃发展的时期,逐渐成为天文学中占主导地位的分支。在这一过程中,美国天文学家海尔成为举足轻重的人物,被誉为20世纪天体物理学的开拓者。

太阳单色光照相仪的发明

1868年6月29日,海尔出生于美国伊利诺伊州芝加哥,他的全名是乔治·埃勒里·海尔。其父是电梯制造商,产品远销美国各地甚至欧洲,并因此而致富。这位富商具有精湛的工艺,并十分爱好科学。海尔的母亲则十分爱好文学和诗歌。幼年的海尔深受双亲的熏陶,他既喜欢自己动手进行各种小实验,又喜欢博览群书。少年时期,海尔曾就读于奥尔兰公学,毕业后考入艾伦学院。1886年,18岁的海尔考入马萨诸塞州理工学院,主修物理学,同时他努力自学天文学,还自愿到哈佛大学天文台充当业余天文观测手。在这过程中,他对天文学的兴趣与日俱增,决心为之贡献出毕生的精力。

1890年,海尔毕业于马萨诸塞理工学院。毕业后不久,他便与康克林小姐结了婚,在蜜月旅行中他们访问了利克天文台。返回芝加哥之后,他得到父亲的资助,在自己住宅的顶层建起了一座私人天文台——肯伍德天文台。在这所天文台中有他自己动手设计建造的太阳光谱仪。

在肯伍德天文台,海尔还作出了他一生中的第一个重要发明。早在马萨诸塞州理工学院求学期间,他就开始考虑怎样用单色光来拍摄天体的照片,这对于恒星来说很难行得通:因为一方面恒星太暗弱,若将星光展成光谱后,仅仅截取该光谱中某波长附近的单色光很难拍到成功的恒星单色光照片;另一方面恒星是一个点光源,使用望远镜也无法显示出它的视圆面,因此即使获得了它的单色光照片也无法显示出它的表面细节。但对太阳而言,情况就完全不同了。太阳发出的光很强,即使使用某波长附近的单色光就足以使底片很快感光,况且太阳又是一个延伸天体。海尔想到若获得了太阳某种单色光的照片,也许可以取得许多太阳白光照片所无法显示出的新信息。

经过数年的深思,海尔终于在1891年发明了一种依靠太阳像和底片同步扫描来获得太阳单色像的装置——太阳单色光照相仪。

海尔所发明的太阳单色光照相仪在此后近四十年中成为对太阳进行观测研究的重要武器。太阳白光照相只能把太阳光球上黑子等现象拍摄下来,但对太阳光球上的色球层中的太阳活动现象却无能为力。然而使用太阳单色光照相仪却可获得Hα(氢的第一条巴耳末线,其波长为6563埃,1埃=10-8厘米)等谱线处的太阳单色光照片,由于该波长处的辐射主要是由太阳色球层发出的,所以这种太阳单色光照片实际上是太阳色球层的像。在这种照片上,太阳耀斑(太阳色球上层的剧烈爆发)、日珥(突出于太阳边缘的抛射物)等现象清晰可见。直到20世纪30年代,法国天文学家李奥将他发明的偏振干涉滤光器装在望远镜终端,构成了专用于观测太阳色球的色球望远镜,它能更直接、更迅速地获得太阳的单色像,海尔的太阳单色光照相仪才逐渐退出历史舞台。

筹建叶凯士天文台

1892年,海尔受聘任芝加哥大学天体物理学副教授。他很想为该校建立一座拥有举世瞩目大望远镜的天文台。在这之前,他与夫人蜜月旅行时曾见过利克天文台的口径91厘米的折射望远镜,它是美国光学家克拉克父子在1888年完成的杰作。这架当时世界上最大的折射望远镜给海尔留下了极深刻的印象。

利克天文台这架口径91厘米的折射望远镜落成前几个月,老克拉克不幸谢世,小克拉克决心继承父亲的遗志,研制口径更大的折射望远镜。不久,南加利福尼亚大学提出了一个雄心勃勃的计划,他们想请小克拉克研制一台口径102厘米的折射望远镜。但当小克拉克为此计划买来了磨制消色差物镜的冕牌玻璃和火石玻璃两种镜坯之后,这所大学因无法筹齐研制望远镜的经费而使该计划搁浅。海尔得悉这件事后,决心出面扭转这一尴尬局面,他瞄准了一位猎取对象——芝加哥首屈一指的巨富金融家叶凯士,他以高超的技巧一次次向后者游说,使后者一再增加捐款,最后后者发现自己已为该望远镜以及安装它的天文台投入了349000美元。

有了这笔巨款,海尔一面代表芝加哥大学向小克拉克订购口径102厘米的折射望远镜,一面又为安装此望远镜选择合适的天文台台址。小克拉克全力以赴地开始了研制工作,他根据精密的设计用冕牌玻璃镜坯磨制成凸透镜,又用火石玻璃镜坯磨制成凹透镜,两透镜组合以后成了焦距约18米的像质极佳的消色差物镜。与此同时他又研制出精密的望远镜机械组件。组装后这架望远镜总重量达18吨,但是它极为平衡,用很微小的力就可以使之指向天空的任何方位,它还能十分精确地跟踪天体的周日视运动。为安装这架望远镜,海尔在威斯康星州的日内瓦湖边选定了一个台址,它离芝加哥约130千米,海拔73米,观测条件相当优越。这座隶属于芝加哥大学的新天文台用捐款人的姓氏命名,称叶凯士天文台。

1897年5月21日,口径102厘米的折射望远镜在叶凯士天文台首次启用,小克拉克在这之后三周谢世。该望远镜至今还是世界上口径最大的折射望远镜。

“太阳物理学之父”

1895年,海尔担任叶凯士天文台首任台长。1897年,他又被聘为芝加哥大学天体物理学教授。进入20世纪之后,海尔又开始规划筹建一座不隶属于任何大学的独立的一流天文台。在加利福尼亚州帕萨迪纳东北方48千米处有一座海拔1800米的威尔逊山,经考察那里是进行天文观测的极佳地点,海尔便筹划在此建一座新天文台——威尔逊山天文台。经过他多方奔走,这一规划获得了卡内基基金会的一大笔资助。于是他一面留任叶凯士天文台台长(直至1905年),一面又开始了威尔逊山天文台的筹建工作,并在1904~1923年任该台台长。

威尔逊山天文台率先开展的一项工作是对太阳的观测研究。为了细致地研究太阳光谱,就必须有色散度很高的太阳光谱仪,它体积庞大,又很沉重,无法直接挂在望远镜的终端,因此最好的办法是将它固定在实验室中。那么怎样才能保证太阳横空而过时,其光束始终不变地射向该光谱仪呢?海尔采用了一种“定天镜”系统,它由两块平面镜组成,凭藉其相对位置的变化和不断地绕轴转动,可使得太阳光束始终沿水平方向投向某个固定方位,然后在那里安装高色散的太阳光谱仪进行观测。这种仪器被称为“水平式太阳望远镜”。根据这一构想,威尔逊山天文台建成了第一架这样的望远镜,但它未及使用就被一场大火所焚毁。这时海伦·斯诺小姐慷慨捐款10000美元,建成了第二台水平式太阳望远镜,它又被命名为“斯诺望远镜”。1904年,海尔用它拍摄到第一张黑子光谱片。通过对黑子光谱的分析,他获得了黑子温度低于日面其他区域温度的结论。海尔还发现,由于阳光照射下地面上升气流的湍动,水平式太阳望远镜的成像质量往往不理想,于是他又构想出一种新方案,让定天镜反射出来的太阳光束不是在水平方向保持恒定,而是垂直地从上到下保持恒定,同时还用一座空心圆塔将这条太阳光束保护起来,使它与塔外地面上的上升热气流相隔离,然后在塔的底部装上一块平面镜把射来的太阳光束反射到太阳光谱仪等设备上。这种装置被称为塔式太阳望远镜,简称太阳塔,其成像质量远比水平式太阳望远镜好得多。1908年,海尔建成了高约18米的太阳塔,凭藉它所获得的高质量、高色散的太阳光谱,他发现太阳黑子区有些谱线竟是双重甚至三重的。这是什么原因造成的呢?他想起了荷兰物理学家塞曼的重要发现。1896年塞曼指出,在强磁场中的光源发出的谱线会发生分裂,如果视线方向和磁力线方向平行,谱线就分裂为二,两子线分别离开谱线中心位置,各自向红端与紫端位移;如果视线方向和磁力线方向垂直,谱线就分裂为三,除上面两条子线外还会在该谱线的原来位置上存在一条子线。塞曼还指出,磁场强度越大时分立子线间的间距也越大,这一重要发现后来被定名为塞曼效应。通过仔细的研究,海尔发现太阳黑子谱线的分裂现象正是由于黑子具有强磁场而引起的,他还据此推算出黑子的磁场高达十分之几特斯拉(1特斯拉等于10000高斯)。

1912年,海尔又主持建成了高46米的更精良的太阳塔,并配以高色散的太阳光谱仪。用它对太阳的进一步观测研究发现,不仅黑子存在磁场,而且整个太阳还存在着普遍磁场,其磁场强度比黑子磁场要微弱得多,1930年他测得太阳普遍磁场的强度为万分之四特斯拉。

使用上面提到的两座太阳塔,海尔等人对太阳黑子进行了长期的观测研究。他发现黑子也有通常偶极磁场所拥有的N极和S极,而且太阳表面以赤道为分界的南北两个半球上,所有的双极黑子群中的前导黑子和后随黑子都具有不同的极性,不同半球上的前导黑子的极性正好相反,后随黑子的极性也正好相反。

在海尔以前,天文学家都根据太阳黑子的多寡来划分,认为太阳黑子存在着11年的周期性,但海尔等人却在1913年发现,当一个11年的太阳黑子周结束而下一个黑子周开始时,在同一半球上的黑子群与上一周的黑子群相比,前导黑子与后随黑子的S、N磁极正好颠倒过来了。

于是海尔在1919年提出,若考虑黑子的磁性,太阳活动的真正周期不是11年,而是22年,称为黑子的磁周期。同年他还提出了黑子群的磁分类法。

1923年,海尔研制成太阳单色光观测镜,它与太阳单色光照相仪相类似,是用扫描方式来获得太阳的单色像,但其终端不是使用底片拍照,而是用人眼进行目视观测,它更适合于对色球层中的太阳活动现象进行长期的、连续的监测。

海尔的这些工作,开创了用物理方法对太阳的深入研究,天体物理学中的重要分支——太阳物理学从此诞生。因此人们常将海尔誉为“太阳物理学之父”。

筹建巨型反射望远镜

海尔在叶凯士天文台所建的口径102米的折射望远镜已经达到了这类望远镜的顶峰,因为再加大物镜的口径时必须同时加厚物镜的厚度,于是口径增大所多收集到的星光就会被厚度变厚所多吸收的星光相抵消,因此加大物镜口径便不会再有多大作用。怎样才能研制出口径更大的望远镜以探索更遥远、更暗弱的天体呢?海尔想到了筹建巨型反射望远镜。

说到巨型反射望远镜,英国天文学家威廉·赫歇尔和罗斯伯爵三世已经起步在先,两人分别在1789年和1845年各自研制出口径122米和183米的反射望远镜,在当时堪称登峰造极。

但那时的反射望远镜其物镜都是金属镜面的,它很难磨制,只能反射20%左右的星光,又容易失泽,而且在夜晚天文观测过程中,由于金属镜面受温度变化会产生微小形变,成像质量欠佳。但是,在威廉·赫歇尔和罗斯伯爵三世的时代,那是无奈的,因为那时的反射望远镜无法采用别的材料来磨制。有人想到,折射望远镜的物镜用玻璃磨制,那么反射望远镜的物镜是否也可以用玻璃来磨制呢?玻璃比金属比重小,价格低廉,容易研磨和抛光,但是玻璃是透明的,即使其镜面形状已研磨得符合要求,抛光得又很光洁,依然无法作为反射望远镜物镜来使用。因为只有一小部分的光从镜面直接反射,大部分光穿过镜面,照到它的底面,有的光穿出底面跑掉了,另有一些光又从底面反射回来,再次穿出镜面,结果直接从镜面反射的光便同从底面反射回来的光互相干扰,星像便显得模糊不清。

转折点于1856年到来,这一年,德国化学家利比希发明了在玻璃镜面上镀上银膜的技术。此技术立即被用到反射望远镜上。镀银后的镜面光鉴照人,它可以把80%以上的入射光反射出来,比金属镜面的反射率高得多。从此反射望远镜迎来了一场革命。到了海尔时代,金属镜面的反射望远镜已经淘汰,取而代之的是镀银的玻璃镜面的反射望远镜,只是那时的这种反射望远镜口径还不太大。海尔的雄心壮志是要建造比威廉·赫歇尔和罗斯伯爵三世的巨型金属面反射望远镜口径更大、性能更好、运转更灵活的巨型反射望远镜。在这方面他一生中实现了一个卓越不凡的“三级跳”。

“三级跳”的第一跳是筹建一台口径152米(60英寸)的反射望远镜。19世纪末年,芝加哥大学所属的叶凯士天文台打算研制一台大型反射望远镜,于是海尔的父亲从巴黎买来了一块口径152米的镜坯,但后来由于该台无法筹措到足够的经费而使此计划搁浅。1903年,海尔从卡内基基金会获得筹建威尔逊山天文台的经费时,建造一台大型反射望远镜已在该台的规划之中,这就是说经费已得到了保证。于是海尔从他父亲那里买来了这块镜坯,组织人研制口径152米的反射望远镜。1904年,海尔就任了威尔逊山天文台的首任台长,这项工作又成为他的首先要抓的几件大事之一。1908年,该望远镜在该台落成,它的性能比罗斯伯爵三世那台口径183米反射望远镜优越得多,用它曝光四小时,可拍摄暗到20等的恒星,用它拍摄恒星光谱也空前地清晰。

同类推荐
  • 神奇的动物

    神奇的动物

    本系列丛书出版发行以来,受到广大青少年读者的热烈欢迎,反响强烈。应该说,这是很自然很正常的。因为青少年的好奇心最强,求知欲正盛,而本丛书不仅满足这种好奇心,提升这种求知欲,还激发青少年对人类未解之谜的关注之心,对未来科学问题的探索之志。
  • 雪地寻踪

    雪地寻踪

    维·比安基的作品分许多种类型,本书表现了作者引导孩子去多多掌握大自然知识,鼓励小读者去辨别鸟兽踪迹,熟悉自然环境。在一些关键时刻,这种知识和经验不仅大有用处和益处,而且还能用以自救,帮助孩子们脱离置人于死地的险境。这类作品多半适宜于高年级孩子阅读。《雪地寻踪》就是这方面的代表作品。
  • 给孩子讲点美丽诗词

    给孩子讲点美丽诗词

    古诗中有顾盼生姿的少女,娴静温柔,叉不乏活泼之趣;有壮志满怀的男儿,气宇轩昂,也充满真情实意;有落魄的书生、得意的官员、思乡的游子、放浪的狂生、睿智的老人……这些人以其一生的经历,凝结成一首小诗、一曲小词。这些满是欢笑与泪水的作品,化成一本美丽诗词放于孩子的案头,就像一个神秘的世界等待他们去冒险,去寻找了解自己的朋友,采摘其中的名言佳句,学得妙笔生花的本领,拥有为人处世的智慧。本书在兼顾美感与哲理的同时,也给了孩子一些写作上的指导,帮助他们理解诗词,也让他们能灵活地运用我们熟悉的汉字、语言。希望这本《给孩子讲点美丽诗词》能陪伴着孩子度过一个美丽的童年,并且直到他们踏入美丽的人生。
  • 拯救狼族特别行动(乔冬冬奇趣幻想系列)

    拯救狼族特别行动(乔冬冬奇趣幻想系列)

    乔冬冬是个五年级的男生,他调皮好动,对新鲜事物充满好奇,喜欢幻想,乐于助人,总是希望遭遇新奇有趣的事情,于是在他的生活中,便有了很多好玩刺激的故事,以及好多稀奇古怪又真诚善良的朋友,正是这些事情和朋友,帮助了他的成长。本系列丛书正是描写了这样一个城市中的普通男孩在成长过程中的奇幻故事,第一季出版4本,分别是《电脑骑士战记》、《变形校车魔法师》、《72变小女生》、《拯救狼族特别行动》。
  • 千鸟谷追踪(大自然在召唤)

    千鸟谷追踪(大自然在召唤)

    本书描写几位小探险家,在护林员的带领下,追踪相思鸟,历尽艰险,神游鸟类世界的故事。本书充满了鸟类世界的奇趣。
热门推荐
  • 相遇那一刻

    相遇那一刻

    那一刻,他与她一次偶然间的相遇,他对她一见钟情,暗生情愫,之后,又在一次巧合中碰到。他是明星,她是一个学生,他们之间会发生什么故事呢?敬请期待~~~这是一部青春的现代小说,希望各位书友能多多鉴赏,谢谢大家,请多多指教。
  • 重生财女很嚣张

    重生财女很嚣张

    上一世,姜暖烟错信堂姐,希望她们能说服太子,重审棉衣一案,备受凌辱之后,方知兰溪姜家早被满门抄斩,而这一切的罪魁祸首真是她嫡亲的祖母、伯父……重生归来,这一世,她保家业,护家人,踩姐妹、打兄长,气伯母,斗伯父,更是气死祖母,再将太子拉下马!为了不让兰溪姜家重蹈覆辙,她看似嚣张横行,实则步步算计。他,貌赛潘安,权倾天下,一双桃花眼处处风流债……偏偏她对自己冷嘲热讽,每每捉弄……他为她暗中扫除阴谋暗杀,他为她与太子明争暗斗,他为她披甲上阵……新婚之夜,她才发现被称作风流小侯爷的他竟然……
  • 两个皇帝鸣翠柳

    两个皇帝鸣翠柳

    她,是郁国女皇,人前呆萌可爱,人畜无害;人后腹黑嚣张,就是一祸害。他,是影国君王,人前高贵冷艳,风光无限;人后无恶不作,节操无下限?!满朝文武齐声高呼:“陛下,精分是病,得治!”皇甫元潇:“一山不容二虎!”冷竹宣:“除非一公一母。”皇甫元潇:“……”朝堂权谋,幸有他倾力相助;江湖纷扰,怎敌她侠骨柔情。且看两个皇帝鸣翠柳,反派统统上西天。皇上,是臣输了!
  • 我的女王是财迷

    我的女王是财迷

    虽然她有点坑,不仅各种暴力,还财迷……但是没办法,他就是喜欢被她使唤,就是喜欢她见钱眼开的模样……
  • 浅浅爱微微痛

    浅浅爱微微痛

    三个人,谁都有过的青春,唯美的城郭带着一点儿罅隙,“让我们用想同的姿态阅读,得以获得心灵的慰藉。
  • 渡魂笔录

    渡魂笔录

    本生活在豪门的少年夏铭轩,在一次执意的离家出走中,进了一家诡异的便利店工作。因他双眼天生与常人不同,也使得他一步步了解了这个神秘的便利店。神秘的女老板离寐,每天穿梭于无数灵魂之中,将他们带往一个名为“冥界”的神秘世界......神出鬼没的夜笙,总是追捕着无数散落在人间的灵魂,每日在无数有眷恋这个世界的灵魂中格格不入......每日不误正业的中年大叔祈落,在嬉笑中收服一个又一个的灵魂......一个有一个的诡异故事将无数人牵扯其中,亦是有无数人在转眼间变成散落人间的灵魂,他们身份不同,所谋求的也有所不同。在无数灵魂的故事背后,究竟有怎样的秘密?
  • 罗曼蒂克商学院

    罗曼蒂克商学院

    爱情有苦有甜,但是面对情敌时更要相信爱你的那个他。六大家族里的每一位继承人都在一所学校里读书——罗曼蒂克商学院在三位神经女主遇上三位帅气男孩时,又会发生怎样的故事?到最后他们能不能克服种种考验,各自在一起呢?
  • 我的充气女友

    我的充气女友

    充气女友版本2.0,支持语音?为何我有一种即将迎娶白富美,走向人身巅峰的感觉?算了,我这么屌丝还是只能做做白日梦就好了。
  • 《梦境的边缘》

    《梦境的边缘》

    “咯咯咯咯......”那如恶灵的生物在我后面疯狂的大笑,死人一样的声音折磨着我脆弱的耳膜,可是...我又怎么能改变,经历了无数次杀戮,痛苦,求死,我的脑中,全都是——“咯咯咯咯......杀死它们,让他们知道...你们人类的脆弱吧咯咯咯咯咯咯咯咯....”
  • 哈佛教授常给学生讲述的200个心理健康故事

    哈佛教授常给学生讲述的200个心理健康故事

    这是一本关于哈佛和心理健康的书籍,是给予心灵营养的成长箴言录,提升心理素质的智慧枕边书。本书不仅故事精彩,行文通俗易懂,而且富有哲理的点评,能为青少年的心灵送上一道滋补的鸡汤。书中每章附有哈佛教授的名言,让我们感受到他们的温言细语就仿佛在耳畔:与此同时,还有哈佛精英介绍以及相关名人名言,让我们能从伟人那里学习到成长的经验和强韧心灵的妙方。心理健康是青少年受益一生的财富,青少年要健康成长,本书精心演绎的精彩不容错过。