登陆注册
5977700000002

第2章

泥版的故事

19世纪前期,人们在亚洲西部伊拉克境内发现了50万块泥版,上面密密麻麻地刻有奇怪的符号。这些符号是古巴比伦人所用的文字,现在人们称它为“楔形文字”。科学家经过研究,弄清了泥版上所记载的,是古巴比伦人已获得的知识,其中包括了大量的数学知识。

古代人最初用石块、绳结,后来又用手指来记数。一个指头代表1,两个指头代表2,……,当数到10时,就得重新开始,巴比伦人由此产生了逢十进一概念。又因为,一年中月亮有12次圆缺,一只手又有5个指头,12×5=60。这样,他们又有了隔60进一的记数法。他们用表示1,表示10,从1到9是把写相应的次数,从10到50是把和结合起来写相应的次数。例如35写成。这种记数的方法,影响了后人,产生了现在我们所用的十进制和六十进制。例如,时间分为1小时=60分,1分=60秒。

巴比伦人还掌握了许多计算方法,并且编制各种数表帮助计算。从那些泥版上,人们发现巴比伦人已有了乘法表、倒数表、平方和立方表、平方根和立方根表。他们还运用了代数概念。

巴比伦泥版上还有这样的问题:兄弟10人分123米那的银子(米那及后面的赛克尔都是古代的重量单位,其中1米那=60赛克尔),已知他们分得的银子数成等差数列,而且第八个人的银子为6赛克尔,求每人所得的银子数量。从这样一些例子中,科学家认识到了巴比伦已知道等差数列、等比数列的概念。

巴比伦人也具备了初步的几何知识。他们会把不规则形状的田地分割为长方形、三角形和梯形来计算面积,也能计算简单的体积。他们非常熟悉等分圆周的方法,求得圆周与直径的比π≈3,还使用了勾股定理。

他们的成就对后来数学的发展产生了巨大的影响。

金字塔和纸草书

闻名世界的埃及金字塔,几百年来不仅以它宏伟高大的气势,吸引了无数旅游观光者,而且由于它设计的别致,建造的精巧,吸引了世界各地的科学家。据对最大的胡夫金字塔的测算,发现它原高1465米(现因损坏还高137米),基底正方形每边长233米(现为227米)。但是,各底边长度的误差仅仅是16厘米,只是全长的114600;基底直角的误差只有12″,仅为直角的127000。此外,金字塔的四个面正向着东南西北,底面正方形两边与正北的偏差,也分别只有2′30″和5′30″。

这么高大的金字塔,建造精度如此之高,这使得科学家深信,古埃及人已掌握了丰富的知识。当科学家破译了古埃及人流传下来草片上的文字后,这一猜想得到了证实。

原来,在尼罗河三角洲盛产一种形状如芦苇的水生植物——纸莎草,古埃及人把这种草从纵面剖成小条,拼排整齐,连接成片,压榨晒干,用来写字,在纸莎草上写的字,叫纸草书。

如今将这种纸草书的一部分整理出来。

1822年,一位名叫高博良的法国人弄清了它们的含义,使人们知道,古埃及人已学会用数学来管理国家和宗教事务,确定付给劳役者的报酬,求谷仓的容积和田地的面积,按土地面积估计应该征收的地税,计算修造房屋和防御工程所需要的砖块数;计算酿造一定量酒所需的谷物数量;等等。换成数学的语言就是,古埃及人已经掌握了加减乘除运算、分数的运算;他们解决了一元一次方程和一类相当于二元二次方程组的特殊问题。纸草书上还有关于等差数列和等比数列的问题。他们计算矩形、三角形和梯形的面积,长方体、圆柱体、棱台的体积等结果,与现代计算值相近。更令人惊奇的是,他们用公式A=(89d)2(d为直径)来计算圆面积,这相当于取π值为31605,这是非常了不起的。

由于具有了这样的数学知识,古埃及人建成金字塔就不足为怪了。

佛掌上的“明珠”

印度是个信奉佛教的国度,古印度人对古代数学的贡献,犹如印度佛掌上明珠那样耀眼、令人注目。

在公元前3世纪,印度出现了数的记号。在公元200年到1200年之间,古印度人就知道了数字符号和0符号的应用,这些符号在某些情况下与现在的数字很相似。此后,印度数学引进十进位制的数字和确立数字的位值制,大在简化了数的运算,并使记数法更加明确。如古巴比伦的小记即可以表示1,也可以表示160,而在印度人那里,符号1只能表示1单位,若表示十、百等,须在1的后面写上相应个数的0,现代人就是这样来记数的。

印度人很早就会用负数来表示欠债和反方向运动。他们还接受了无理数概念,在实际计算中把适用于有理数的运算步骤用到无理数中去。他们还解出了一次方程和二次方程。

印度数学在几何方面没有取得大的进展,但对三角学贡献很多。这是古印度人热衷于研究天文学的副产品。如在他们计算中已经用了三种三角量:一种相当于现在的正弦,一种相当于余弦,另一种是正矢,等于1cosa,现在已不采用。他们已经知道三角量之间的某些关系式。如sin2α+cos2α=1,cos(90°-α)=sinα等,还利用半角表达式计算某些特殊角的三角值。

数学之桥

阿拉伯人对古代数学的贡献,早现在人们最熟悉的1、2、…9、0十个数字,称为阿拉伯数字。但是,在数学发展过程中,阿拉伯人主要是吸收、保存了希腊和印度的数学,并将它传给欧洲,架起了一座“数学之桥”。

在算术上,阿拉伯人采用和改进了印度的数字记号和进位记法,也采用了印度的无理数运算,但放弃了负数的运算。代数这门学科的名称就是由阿拉伯人发明的。阿拉伯人还解出一些一次、二次方程,甚至三次方程,并且用几何图形来解释它们的解法。如对于方程x2+10x=39,他们的几何解法如下:作一个正方形,假定它的边长为未知数x,然后在经四边上,向外作x=52的矩形。将整个图形扩充成边长为x+5的正方形,整个大正方形面积等于边长为x的正方形面积与边为52的四个正方形面积及边长各为x、52的四个矩形面积之和。所以大正方形面积是x2+4x×52×x+4×52×52,即x2+10x+25。因为x2+10x=39,所以大正方形面积等于39+25即是64。因此,大正方形边长等于8,而x就是8-252=3。阿拉伯人还用圆锥曲线相交来解三次方程,这是一大进步。

阿拉伯人还获得了较精确的圆周率,得到了2π=6283185307195865,π已计算到17位。此外,他们在三角形上引进了正切和余切,给出了平面三角形的正弦定律的证明。平面三角和球面三角的比较完整的理论也是他们提出的。

阿拉伯数学作为“数字之桥”,还在于翻译并着述了大量数字文献,这些着作传到欧洲后,数字从此进入了新的发展时期。

数学的摇篮

巴比伦人和古埃及人积累了许多数学知识,但他们只能回答“怎么做”,却无法回答“为什么”要这么做的道理。古希腊人从阿拉伯人那里学到了这些经验,进行了精细的思考和严密的推理,才逐渐产生了现代意义上的数学科学。

第一个对数学诞生作出巨大贡献的是泰勒斯。他曾利用太阳影子计算了金字塔的高度,实际上就是利用了相似三角形的性质。他弄清了:直角彼此相等;等腰三角形的底角相等;圆被任一直径平分;如果两个三角形有一边及这边上的两个角对应相等,那么这两个三角形全等;而且证明了这些知识。这些知识现在看起来很简单,但在当时是非常了不起的。

在仄勒斯之后,以毕达哥拉斯为首的后批学者对数学作出了贡献。他们最出色的成就之一是发现了“勾股定理”,在西方被称为“华达哥拉斯定理”。正是用了这一定理,后来导致了无理数的发现,引起了第一次数学危机。

稍晚于毕达哥拉斯的芝诺,提出了四条着名的悖论,对以后数学概念的发展产生了重要的影响。

经过泰勒斯到芝诺等人的努力,古希腊的数学有了全新的发展。欧几里德吸取其中的精华,写成了《几何原本》这本在数学史上最有名的着作。今天人们所学的平面几何学知识,都来源于这本书。

继欧几里德之后,阿基米德开创了希腊数学发展的新时期,人们称之为亚历山大时期,阿基米德在数学方面的工作,远远超越了他那个时代,被后人称为“数学之神”。他设计过一种大数体系,即使整个宇宙都填满了细小的砂粒,也可以毫不费力地把砂子的粒数数出来。他通过作边数越来越多的内接正多边形、外切正多边形,算得了圆周率的值在31071到371之间。他得到了求面积和求体积的公式,还发明了以他名字命名的螺钱。

在阿基米德之后,古希腊的数学更加侧重于应用。在天文学发展的促进下,希帕恰斯、梅尼劳斯、托勒密创立了三角学。尼可马修斯写出了第一本专门的数论曲籍——《算术入门》,丢番图则系统地研究了各种方程,特别是各种不定方程。这们,初等数学的各个分支——算术、数论、代数、几何、三角全部建立了起来,这意味着,由巴比伦人、古埃及人孕育的数学“婴儿”,终于在古希腊的摇篮中诞生了。

几何学的奠基人

两三千年前,古埃及人生活在尼罗河两岸,生产力很发达,大片大片的土地被开发。但是,人类无法与大自然抗争,当时的人们对洪水束手无策。每年,当夏秋季节尼罗河泛滥时期,河两岸的田地就有不少被洪水淹没或因河床改道,好端端的一块农田就会被吞没一块。每到这时,就会有几个聪明的埃及人拿着木棍绳子又比又量,准确地计算法老租给人们土地面积的变化。渐渐地,埃及人积累了不少计算面积的公式。如:

矩形:A=ab(其中A是面积,a是长,b是宽。)三角形:A=ah/2(其中a是边长,h是高。)另外,还能计算出梯形面积。而当时计算圆形面积的公式(8d/9)2,和如今的计算公式极为相近。

但是,当时的人们还没有把这些公式命名为几何学。

到了公元前320年,有一位叫作欧德谟的学者,根据埃及人的经验,写了一本《几何学的发展史》。这部书只有残篇传到了现在。又过了大约20年,古希腊出了一位叫欧几里得的人,他根据前人的经验,经过自己的计算推理,写出了一本共13篇的《原本》(又称《几何原本》)。这是人类第一次出现的“几何”概念。

欧几里得在《原本》这本书里,首先给出的是定义和公理。比如,他的点、线、面的概念:

点是只有位置没有大小的;线是只有长度没有宽度的;面是只有长度和宽度的;平行线是同一平面内无限延长后永不相交的两条直线;……这些定义和现今的几何定义极为相似。

欧几里得还按照逻辑原理,推论出十分严谨美妙的五条公理(又称“公设”)。其中有:

从一点到另一任意点作直线是可能的;所有的直角都相等;a=b,b=c,则a=c;若a=b,则a+c=b+c;《原本》中还有关于圆的性质的讨论。如弦、切线、割线、圆心角等等。讨论了圆的内接和外接图形。其中,有一个命题是在一个圆内作正15边形。

据说,当时的天文学一直认为地球赤道面与地球绕日公转面的交角是24°,即是圆周的1/15。于是,欧几里得运用自己的智慧,作出了正15边形,这在当时是一个难度十分大的命题。

《原本》13篇中共有467个命题。这些命题和推理所建立起来的几何学体系是相当严谨和完整的,以至于连20世纪最伟大的科学家爱因斯坦都这样说:一个人当他最初接触欧几里得几何学时,如果不曾为它的明晰性和可靠性所感动,那么他是不会成为科学家的。

从《原本》的出现到现在,这部书出版过一千次以上,几乎世界上所有的杰出数学家,都是读着《原本》成长起来的。两千多年来,《原本》就像一尊坚固的宝塔,其坚固程度没有人能撼动它。因此,后人,尤其是科学界都把《原本》看作是一部经典奇书,而欧几里得的名字,也同《原本》一道流传千古。

欧几里得大约生于公元前330年,死于公元前275年。可惜的是,他一生的经历久已失传。

数学竞赛判真伪

1500年的某天,意大利北部的布里西亚,一户人家生了一个男孩,取名叫丰坦那。不久,意大利与法国发生战争,法军攻陷了布里西亚地区,大肆屠杀意大利人。丰坦那的父亲死于战祸,小丰坦那的头部和下颚也受了重伤。好在他的母亲是一位聪明而勇敢的妇女,她见儿子受伤,又没有医生看病治疗,她就想到了狗用舌头舔愈伤口的情景。于是,她也学着这个方法,用自己的舌头治好了儿子的伤口。

谁知痊愈后的小丰坦那却得了一个口吃的毛病,说话不连贯,人们就给他取个外号叫塔尔塔利亚(意译为口吃者)。久而久之,塔尔塔利亚就成了他的名字,丰坦那的名字也被人忘记了。

因为父亲死于战乱,塔尔塔利亚的家境十分贫寒,母亲无力送他上学读书。但是,塔尔塔利亚从小求知欲极强,母亲就在他父亲坟墓的石板上教他认字、算题。由于他天资聪明,意志坚强,竟独自学会了拉丁文和希腊文,对数学的钻研成绩更为突出。经过长期自学,成人后,他终于取得了成功,先后在他的家乡布里西亚和威尼斯等地从事教学工作。

塔尔塔利亚专门喜欢解各种数学难题,在这方面不少数学爱好者败在他的手下。

1530年的一天,有一位叫科拉的数学教师向塔尔塔利亚提出两道数学难题进行挑战:

1一个数的立方加上它的平方的3倍等于5,求这个数。实际上是一个一元三次方程,即:x3+3x2=52三个数,第二个数比第一个数多2,第三个数比第二个数多2,三个数的乘积是1000,求这三个数各是多少。实际上这也是一个一元三次方程,即:x(x+2)(x+2+2)=1000,展开后是x3+6x2+8x=1000当时,人类还没有找到三次方程的解法。塔尔塔利亚于是全身心地投入进去,废寝忘食地解这两道题。不久,居然让他解开了,并因此找到了解开一元三次方程的办法。于是,塔尔塔利亚向外公开宣称,他已经知道了一元三次方程的解法,但不能公开自己的步骤,他要保密。此时,有一位叫菲俄的人也宣称,他也找到了解开一元三次方程的办法,并宣称,他的方法是得到了当时着名数学家波伦那大学教授费罗的真传。

他们二人谁真谁假?谁优谁劣?于是,1535年2月22日,在意大利有名的米兰大教堂里,举行了一次仅有塔尔塔利亚和菲俄参加的数学竞赛。竞赛内容专门限于一元三次方程。他们各自给对方出30道题,谁解得对解得快谁就得胜。两个小时之后,塔尔塔利亚解完了全部30道题,而菲俄却一道题也解不出来。竞赛结果,塔尔塔利亚大获全胜。

原来,一元三次方程的问题是1404年被人引起来的。

同类推荐
  • 商务谈判:理论与实务

    商务谈判:理论与实务

    本书主要内容包括:商务谈判概述、商务谈判的准备、商务谈判的开局和报价、商务谈判的磋商和终结、商务谈判的语言与思维等。
  • 法律文书教程

    法律文书教程

    为适应法律职业教育的需要,培养学生处理法律实务的工作能力,宁夏司法警官职业学院组织本校承担专业课程教学的骨干教师编写了系列教材,这本《法律文书教程》就是其中一部。
  • 伊索寓言(语文新课标课外读物)

    伊索寓言(语文新课标课外读物)

    现代中、小学生不能只局限于校园和课本,应该广开视野,广长见识,广泛了解博大的世界和社会,不断增加丰富的现代社会知识和世界信息,才有所精神准备,才能迅速地长大,将来才能够自由地翱翔于世界蓝天。否则,我们将永远是妈妈怀抱中的乖宝宝,将永远是温室里面的豆芽菜,那么,我们将怎样走向社会、走向世界呢?
  • 拉封丹寓言(语文新课标课外必读第二辑)

    拉封丹寓言(语文新课标课外必读第二辑)

    拉封丹的寓言诗虽然大都取材千古代希腊、罗马和印度的寓言以及中世纪和17世纪的民间故事,但是它成功地塑造了贵族、教士、法官、商人、医生和农民等的典型形象,涉及各个阶层和行业,描绘了人类的各种思想和情欲,因此是一面生动地反映17世纪法国社会生活的镜子。
  • 61个故事学会高效听课

    61个故事学会高效听课

    学生的大部分知识都是通过老师的讲课来获取。听课不仅是学生掌握知识、理解知识、增长知识、接受知识的重要环节,还是发展智力、锻炼观察力、培养思维力、提高记忆力和激发想象力的重要途径。本书围绕四大听课基础环节,为广大中小学生提供了优秀的学习指导,其中包括符号预习法、问题目标预习法、横纵听课法、摘录式笔记法、表格式笔记法等多种适用于中小学生的学习方法,配合61位名人有关学习方法的小故事以及名校师生的经验谈,让中小学生更直观地了解高效听课的方法和途径。
热门推荐
  • 凡奇的三万天

    凡奇的三万天

    一天一篇日记,一天一个传奇,最终的结局必然是一个天才强者的崛起!
  • 万灵皇

    万灵皇

    当后天神婴偶得一枚残缺玉佩,开启其逆天资质,其故事从此开始,看其逆天走出弹丸之地走上逆天之途,看其执剑走天涯,看其血战走天下,看其举世皆敌,看其斗破苍天,看其持剑弃苍天,看其成万灵之皇,为万灵至尊,天下主宰,我主沉浮
  • 乡村尸王

    乡村尸王

    融合僵尸,鬼怪,狐妖多种元素,挑战你的视觉神经!
  • 强强联手:游戏大神养成计划

    强强联手:游戏大神养成计划

    她是游戏大神披上新手外衣,铁血治理帮派。他是战力最强的高冷男神,长剑破敌无数。当霸气的帮派二当家遇上沉默寡言的绝对强者。谁能更胜一筹?意外同居的全能男神竟是崇拜已久的游戏大神?!“做我的人,给你最好的。”且看铁血二当家如何独步天下,俘获男神。
  • 刁蛮郡主驯傻夫

    刁蛮郡主驯傻夫

    虽然有了心上人,但是还是被逼着嫁给了自己不喜欢的人。本该是美好的新婚之夜,居然是和衣而卧!而且,醒来后,才发现新郎是傻子!苍天,这到底是什么仇什么怨啊!都把我当成软柿子捏?还真是看错了人了!看本郡主如何让你们这些不识好歹的人下地狱!
  • 阴阳掘墓人

    阴阳掘墓人

    所谓灵异,也就是某些科学无法解释的事情,甚至超出人类本身认知范围的事物,那么这方面的事情是否真的解释不通呢?答案也许非也。
  • 恶黑魂

    恶黑魂

    人死可以复活?骗谁呢……卖血可以买到飞机大炮?开玩笑的吧……神明可以吃掉?还很好吃?不可能吧……这是一个现代大学生在剑与魔法的世界修炼、种田、争霸的故事。这是一个和黑暗之魂、血源有关,又不仅限于此的世界。书友群:141473889,欢迎加入==+
  • 情到深处已惘然

    情到深处已惘然

    一代杀手,不问世事。风华绝代,才子佳人。不爱红妆爱武装,桃花纷纷扬落了一世繁华。蓦然回首,灯火斑斓。待君临天下!“愿砌千里孤坟,换君一世长安”她笑着,待这血干涸时,喃语着曾经的承诺……
  • 多姿多彩的陶俑

    多姿多彩的陶俑

    本书选用了陕西历史博物馆收藏的上起秦、下讫明具有一定代表性的各类陶俑60件(组),其中以被确定为国宝的唐代“三彩骆驼载乐佣”最为精彩。
  • 九蛟应龙诀

    九蛟应龙诀

    少年姜天逆,觉醒上古传承之血,得残篇上古武诀《九蛟应龙诀》,巧夺天地本源,领悟上古战技,突破武道桎梏,融合九蛟血脉,龙魂不灭,踏破九天,笑傲六界,界王之王,万世主宰……