举例来说,两条铁轨本来是平行的,但我们却看到它在“很远”的地方相交于一点,这就是“透视”的作用。研究这些问题的学科是射影几何——数学的一个分支学科。它主要研究图形在射影变换下不变的性质,曾被称为投影几何。它在航空、摄影、测量、绘图、绘画等方面都有广泛的应用。
在古希腊数学家阿波罗尼的《圆锥曲线论》和帕普斯的《数学汇编》等著作中,都可以看到属于射影几何的一些零星原理。在欧洲文艺复兴时期,透视学的发展给射影几何的形成准备了必要条件。意大利数学家阿尔贝蒂(1404~1472)于1435年发表《论绘画》一书,阐述了最早的数学透视法思想。他的同胞达?芬奇在《绘画专论》中坚信,数学的透视法可以将实物精确地体现在一幅画中。意大利另一位画家、数学家弗兰切斯卡约1478年所著的《透视画法论》,发展了阿尔贝蒂的投影思想。
历史推进到了17世纪。数学家们在重新研究古希腊的圆锥曲线和文艺复兴的透视法原理之后,开始作系统的整理工作。其中突出的是法国数学家笛沙格(1591~1661),他被称为射影几何的早期的奠基者之一。1636年,他出版了一本名为《论透视截线》的小册子。这本又译为《用透视表示对象的一般方法》的小册子可看做是射影几何的第一本专著。
19世纪初,射影几何开始复兴。有趣的是,这次复兴却多少与一场战争悲剧有关。
1812年6月,野心勃勃、妄图称霸世界的拿破仑,在横扫大半个欧洲以后,率70万大军渡过涅曼河入侵俄国,矛头直指莫斯科。
俄皇新任命了德高望重、有丰富指挥经验的老将军库图佐夫为总司令。他果断地决定,暂放弃莫斯科,实行坚壁清野,待机发动反攻。于是忍痛焚烧城市,各地都藏起了粮食,展开游击战。库图佐夫则率主力迂回到法军两侧。10月初,寒冬将至,困守空城的拿破仑军队饥寒交迫,一筹莫展,最后只好撤出莫斯科。在向西退出的途中,在斯摩棱斯克被库图佐夫的部队拦住了退路。俄军首先击溃了法军前卫部队缪拉特军团,接着骑兵又粉碎了达武军团,围歼了纳伊军团。拿破仑所部在横渡别列津那河时,几乎全部覆没,只有拿破仑等少数法军得以幸免,狼狈逃回巴黎。
纳伊将军率领的法军遭到围歼后,千万具尸体丢弃在克拉斯内冰天雪地的战场上,其中就有工兵营的中尉彭色列。
彭色列1788年生于梅斯,1807~1810年间在巴黎多科工艺学校学习,成为该国数学家蒙日(1746~1818)的学生。蒙日是与射影几何有关的画法的几何创立者,他的《画法几何学》一书,作为军事秘密长达15年之外,直到1799年才公开出版。1812年,彭色列在拿破仑军中服役,任工兵营中尉。
然而,倒在尸体堆中的彭色列并没有死。彭色列当了俄军俘虏后,被押送回后方,开始了一次近5个月的漫漫长途的徒步行军。最终于1813年3月到达伏尔加河岸的沙拉托夫监狱。开始,狱内的彭色列精疲力竭,奄奄一息。但四月灿烂的阳光恢复了他伤愈后的身体和青春的活力,使他觉得仿佛从一场噩梦中惊醒过来。这时他开始回忆与思考。最值得他回忆的是在大学时的学生生活,他对蒙日老师的“画法几何”和卡诺老师的“位置几何”记忆犹新。阴森冷酷的铁窗、单调乏味的生活,日子是难以打发的。他觉得自己不应该虚度这些光阴,必须找到一种有价值的精神寄托。他决心在研究前人各种几何的基础上,创造出一种新的几何来。
书,当然没法找到,连纸和笔这些起码的工具也没有。于是在开始时他用默诵的办法复习过去所学过的全部数学知识,像在学校里准备考试一样。这时,他和一些难友们感到似乎已经回到巴黎那温暖的学生时代,于是信心倍增。没有纸和笔,他们就从烤火盒里偷偷藏起一些木炭条,在牢房的墙上画几何图形,进行思考和研究。后来,终于设法弄来一些纸,这样,就可以把研究成果记录下来了。功夫不负有心人,在彭色列的潜心研究下,射影几何再次诞生在19世纪俄国的监狱之中。
1814年6月,彭色列被释放。同年9月,他辗转回到法国,随身携带的是七本重要性不亚于他的生命的、在狱中记录缭乱的研究成果。为了纪念这段终身难忘的经历,彭色列把它称为“沙拉托夫备忘录”,或简称“狱中笔记”。经过几年努力,他终于将其整理、归纳成《论图形的射影性质》这一巨著,于1822年在巴黎出版。这本内容丰富的书是第一本完全致力于射影几何学的专著,包含了19世纪该学科的许多新概念、新方法、新成果,标志着近代射影几何的开始。从此迎来了这门学科的历史上所谓的“黄金时代”。
1825年~1835年间,彭色列在梅斯工艺学校任教授。1835年,他来到巴黎,在高等学校任教。1834年彭色列成为巴黎科学院院士后,1851年又成为彼得堡科学院通讯院士。1867年12月22日,他在巴黎辞世。