登陆注册
10155800000005

第5章 趣味故事(4)

1901年6月,英国数学家、哲学家罗素(1872~1970)发现了后人以他的名字命名的“罗素悖论”,这是集合论中的一个悖论,所以又叫“集合悖论”。它的基本内容是:如果把所有集合分为甲、乙两类,甲类可以把自身作为自己的元素,乙类不可以把自身作为自己的元素;那么,所有的乙类集合的集合是甲类还是乙类呢?如果说所有的乙类集合的集合属于甲类,由于甲类可以把自身作为自己的元素,那么乙类集合的集合应属于乙类。如果说所有的乙类集合的集合属于乙类,那么它显然可以纳入所有的乙类集合的集合之中,这样它又符合甲类要求而属于甲类了。由此看来,所有的乙类集合的集合既是甲类又非甲类,既是乙类又非乙类,于是造成了不可克服的逻辑矛盾。1918年,罗素把这个较为高深的集合论中的悖论通俗地解释为前述“理发师悖论”,所以许多文献把这两个悖论相提并论,其本质都是,使逻辑陷入一种无法摆脱的“怪圈”。

那么,“理发师悖论”又怎么会引发危机呢?它的确引出了“危机”——“第三次数学危机”。集合论中存在着不可克服的逻辑矛盾,从根本上危及整个数学体系的确定性和严格性,这怎么不是“危机”呢?

不过,这里有一个很重要的历史背景,就是,为什么这次危机不早不晚,正好在20世纪初即“罗素悖论”提出时就到来了呢?

它似乎是可以早些到来的,因为历史上的数学悖论早已发现且不计其数。例如,古希腊时代欧布利德或古罗马哲学家、政治家西塞罗(公元前106~前43)的“谷堆悖论”,德国哲学家黑格尔的“秃头悖论”,意大利伽利略的“自然数等于完全平方数悖论”,德国数学家施瓦兹(1843~1921)在1880年提出的“施瓦兹悖论”。这些悖论没有能引起“危机”的原因在于,数学家们对自己不够自信,因为类似“悖论”这类问题,在数学中比比皆是,不值得一提。没有引起“危机”的第二个原因在于,其中有的悖论已被“克服”,既已克服,便不存在“危机”。例如古希腊数学家芝诺(约公元前496~前429)提出的四个悖论——其一是众所周知的古希腊神话中善跑的英雄阿基里斯永远追不上乌龟的悖论,在19世纪已经得到解决;有的则未能引起足够的注意。因此在20世纪之前,这一“危机”没有到来。

1874年,德国康托在《克列尔杂志》上发表了《论所有实代数数集合的一个性质》的论文,它标志着集合论的诞生。集合论的创立,颠倒了许多前人的想法,与传统数学观念相冲突,因此一开始就遭到反对者的指责。但在1897年第一次国际数学家大会在瑞士苏黎世召开时,德国数学家赫尔维茨(1859~1919)和法国数学家阿达马(1865~1963)就充分肯定了康托的理论在分析学中的重要地位,最终导致集合论被公认。此外,“皮亚诺算术公理系统”的出现,自然数理论被归结为一组不加定义的概念和几条有关的公理,算术理论公理化了。这样,数学的基础就放在集合论之上了。

这样,在19世纪后半叶,数学家们开始陶醉了:数学基础已牢固无比,数学的严密性已达到。不过,几乎同时,一些事也使数学家们不那么“陶醉”:1897年,意大利数学家布拉利·福蒂(1861~1931)提出了以他名字命名的悖论;1899年,康托也提出“最大基数悖论”和“最大序数悖论”。这些集合论中的悖论也没有得到解决,一些人心中也产生了困惑。

然而,这些并没能阻止人们的自信。1900年在巴黎召开的第二次国际数学家大会上,法国著名数学家、物理学家庞加莱(1854~1912)就宣称:“现在,我们能说(数学)完全的严格性已经到来了。”接着便是前述“罗素悖论”和“第三次数学危机”的出现。

由此可见,“第三次数学危机”是在人们误以为数学基础已经牢固,因而盲目乐观,但接着就遇到无法克服的“悖论”时思想准备不足而必然产生的。

不过,“第三次数学危机”的出现虽然使西方数学界、哲学界、逻辑界产生震惊,但并未使他们方寸大乱。因为人们已经有前两次“危机”的历史“经验”。于是他们为消除这一危机进行了至今仍在继续的努力。但在20世纪前30年是他们投入最多、辩论最激烈的时期,因而许多重大成果相继产生。其中成果之一便是三大数学流派——逻辑主义、直觉主义、形式主义的诞生。

1931年,奥地利数学家哥德尔(1906~1972)发表了《论“数学原理”和有关体系的形式不可判定命题》的论文,给出了两个“不完备定理”,这是“数学和逻辑基础方面伟大的划时代的贡献”。哥德尔第一定理推翻了数学的所有领域能被完全公理化这一强烈的信念;而第二定理则摧毁了沿着希尔伯特等人设想过的路线证明数学内部相容性的全部希望。从此,前述三大数学流派为克服“危机”、寻找可靠数学基础的努力全部化为泡影!于是,数学家们再次陷入困惑,人们在困惑中沿着不完备定理这一指路明灯进入新一轮的思考和探索。

不完备定理表明,任何所谓严密形式体系都不是天衣无缝的,没有哪个重要的部门能保证自己没有内在矛盾,人的智慧源泉不能被完全公理化;新的证明原则等待我们去发现或发明,某些被认可的数学哲学应重新评价,其中有的会被更新或废弃。这种认识论上的飞跃为我们开拓了广阔的视野。

由“悖论”这一“怪圈”引出“危机”,探究克服“危机”完善了三大数学流派,摧毁这些流派的幻想出现哥德尔不完备定理,导致至今尚未完结的探索,这是发生在数学领域里近一个世纪的事。那么,这种“怪圈”仅仅在数学领域内才有吗?

不是,这种“怪圈”普遍存在,在美术和音乐及其他领域都存在这种现象。

1979年,美国数学家道格拉斯·霍夫斯塔特写了一本名为《GEB——一条永恒的金带》的书。书名和内容一样使人好奇,在美国轰动一时,曾获普利策大奖。普利策奖是赴美匈牙利人普利策(1847~1911)创立的,以这位办报人命名的奖虽然每份只有1000美元奖金,但却是新闻界的最高奖赏。上述书名中的“G”指数学家哥德尔(Godel),“E”指画家默里斯·戈罗奈里维斯·埃舍尔(Escher),“B”则指“音乐之父”巴赫(Bach)。

那为什么霍夫斯塔特会把数学家、画家、音乐家绑在一起而使书名中有“GEB”呢?

该书认为,人的思维存在一个“怪圈”,这个“怪圈”会使人的思维在前进过程中不自觉地回到起点上去。正好我们前面谈到的哥德尔不完备定理,这个定理使我们面临二择一的两难境地:要么在逻辑思维中可以是不一致的;要么导致另一个结果,使我们无法用逻辑去证明所有看来是用逻辑提出的问题,这就是不可判定性。哥德尔不完备定理就是指出了数学中的这种“怪圈”。

1961年,埃舍尔画了一幅版画,名为《瀑布》。在画的中部,瀑布倾泻而下,水花溅起,水再经过水槽向下流去,经过三个直角曲折,却流向瀑布口!这真是不可思议:水究竟是往上流,还是往下流?可是在画面上却表现得明明白白。水也像人的思维一样,回到了起点。这就是美术的“怪圈”。

“卡农”是英文canon的音译,是复调音乐写作技法。巴赫曾用卡农技法写成了举世闻名的主题乐曲《音乐的奉献》,并把它献给他当时崇拜的国王——弗里德里希。这首乐曲的奥妙之一在于,它神不知鬼不觉地进行变调,使结尾最后又平滑地过渡到开头。这种首尾相接的变调使听众有一种不断增调的感觉。在转了几圈之后,听众已感到离开原调很远。但奇妙的是,通过这样的变调却又回到原来的调上!这就是音乐中“怪圈”的实例。对此,有人将其称之为“无限升高的卡农”。

此外,英国数学家图灵(1912~1954)在计算机理论中指出,即使可以设想的最有效的计算机,也存在着无法弥补的漏洞,这个与哥德尔不完备定理等价的理论是人工智能和思维的“怪圈”。

人在漆黑的夜晚、迷蒙的雾中、茫茫的风雪中、遮天蔽日的森林中等无法辨别方向的条件下行走,无论起初朝什么方向,其结果都是不断地回到原来的出发点。这是行走时的一种“怪圈”。美国大幽默家马克·吐温在他的《国外旅游记》就记叙了他在旅馆的一个黑暗房间里旅行了整夜的故事。在那天夜里,他在那个房间里转圈47英里(约75公里),仍然没有走出房间。虽然这一故事有夸大其辞之嫌,但人在无法辨别方向时会“转圈”却是不争的事实。

人为什么会转圈呢?这是由于人的左脚走出一步与右脚走出一步的长度不相等的缘故。由于左右脚每步长度不等,所以每走一步便偏离前进方向一点点——“差之毫厘”,许多步积累起来,最终便回到原地——“失之千里”了。有人在威尼斯的马尔克广场上做了这样一次试验。把一些人的眼睛蒙上后,把他们送到广场的一端,叫他们走到对面的教堂去。虽然要走的路仅有175米,但却没有一个人走到宽达84米的教堂前——都走成了弧线,偏到一边碰到旁边的柱子上。挪威生理学家古德贝克在1896年对类似问题作过专题研究,并搜集了这类例子。其中例子之一是,有3个旅行者在宽约4公里的山谷中,企图在黑夜中走出山谷,但走了5次,都回到了原出发点,最后筋疲力尽,只好坐待天明。

在许多旅游景点,都有一个“瞎子摸佛”——蒙上双眼走一段路去摸“佛”字或一座佛像——游戏,但多以失败告终,也是上述道理。

不仅走路如此,划船也如此。古德贝克搜集了一个在浓雾中的小船,在一个4公里宽的海峡兜圈子的例子——人两手划桨时用力不等使船的行进路线偏离,不断偏离便回原地。

不但人有此“怪圈”,许多生物也是这样。北极探险家发现,爱斯基摩狗拉雪橇时如不导引,这只狗会在雪地上转圆圈。把狗的眼蒙上放进水里,它会在水里转圈。瞎眼的鸟在空中会转圈,被击伤的野兽会因恐慌而不自觉地沿曲线逃离,蝌蚪、螃蟹、水母、微生物阿米巴等都会沿曲线运动。

由此可见,“怪圈”是科学、艺术和生物等领域中一个普遍的现象,怪不得霍夫斯塔特将“怪圈”称为“一条永恒的金带”。

从理发师到“悖论”——“怪圈”,使我们清醒地认识人类,认识自己,认识大自然。

从骰子到原子弹

蒙特卡洛是地中海沿岸欧洲国家摩纳哥的一个城市,它以“赌城”闻名于世。那里云集了来自世界各地的赌徒。赌徒们赢了,可以“纸醉金迷”一番;输了,可以到那里的一座“自杀桥”投河自尽——生死都可以“风流”。

蒙特卡洛方法,是数学中的一种方法。那为什么数学方法要用这样一个“不光彩”的城市来命名呢?骰子和原子弹与它又有什么关系呢?

数学有一门叫概率论的分支,而它的起源则是对赌博的研究。而当时欧洲在赌博时常用骰子为赌具,于是我们的故事就从15世纪欧洲用骰子的赌博开始。

意大利数学家帕巧利(1445~1514)最早对赌博中的输赢作了估计。他于1494年发表了数学专著《算术、几何、比和比例摘要》,其中就研究了如下赌博问题。在一次赌博中,两个赌徒都各自要赢6次才算赢。但在一个只赢了5次,另一个只赢了2次时比赛就中断了。问题是:这时应如何分配总的赌金。帕巧利的主张是按5∶2分配。虽然他并没有正确地解答这一问题,但由此却引起了人们的思考。

到了16世纪,另外两位意大利数学家塔尔塔利亚(约1500~1557)和卡尔丹(1501~1576)也研究过类似的赌博问题。卡尔丹还为此写了一本叫《赌博论》的书。书中算出了掷两颗或三颗骰子时,在一切可能的方法中得到某一总点数的方法数;并认为上述问题的答案不是赌过的次数之比5∶2,而是应考虑剩下的次数,即总赌金应按(1+2+3+4)∶1=10∶1来分配——可见他的思路是对的,但计算方法却不对。

16世纪末,欧洲许多国家的保险业从航海扩大到工商业。由于保险业务的扩大和保险对象都带有随机现象的色彩,所以迫使他们研究这样一个问题:既要保证赢利,因此收的保险金不能太少;又要保证投保人乐意投保,因此收的保险金又不能太多。这就需要对保险问题所涉及的随机现象进行研究而创立保险业的一般理论。于是,概率论产生的时机到了。但问题的难点是,保险问题所涉及的随机现象常常被许多错综复杂的因素干扰,因此,人们便从简单的、容易研究的赌博问题入手,于是“骰子”再次摆到数学家们的桌子上。因此,后来有人甚至戏称概率论为“赌博的科学”。

1654年7月29日,是概率论史上一个值得纪念的日子。这一天,法国数学家帕斯卡写信给另一位法国数学家费马研究了赌博问题。由于二人的通信讨论,概率这一概念才比较明确。因此,二人是严格意义下的概论的早期创立者。当然,创立者还应加上荷兰数学家惠更斯,因为他于1657年发表了《论赌博中的推理》。在该文中,他建立了概率和期望等重要概念,并得到相应的性质和计算方法。

同类推荐
  • 神秘的人体(探索宇宙奥秘系列丛书)

    神秘的人体(探索宇宙奥秘系列丛书)

    宇宙,是这个世界上谜团最多的地方,也是最吸引孩子好奇心的地方。宇宙包含着最神秘的未知和疑问,人类正在以高超的科学手段和不懈的努力不断深入探索宇宙的深处,希望了解人类自身的过去与未来。而地球是我们人类赖以生存的家园。在漫长的岁月中,人类一直在这个星球上繁衍生息。虽然它只是太阳系中一颗普通的行星,但它在许多方面却又是独一无二的:它是太阳系中唯一一颗表面大部分被水覆盖的行星,也是目前所知唯一一颗有生命存在的星球……《探索宇宙奥秘系列丛书》向孩子们展示这个既熟悉又神奇的世界。
  • 把舌头当鼻子用的蛇:爬行动物

    把舌头当鼻子用的蛇:爬行动物

    在爬行动物的世界里,有很多我们不知道的秘密,比如为什么鳄鱼在吃食物的时候会流眼泪?蜥蜴为什么要断掉自己的尾巴?蛇又是如何拿自己的舌头当鼻子用的?$$总有太多的疑问困扰着我们。此刻,让我们带着众多的疑问,翻开《青少年科普图书馆·把舌头当鼻子用的蛇:爬行动物》。在众多身怀绝技的爬行动物的陪伴下,开始愉快的阅读之旅吧!
  • 战机大观

    战机大观

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,社会的进步、科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。科学教育,是提高青少年素质的重要因素,是现代教育的核心,这不仅能使青少年获得生活和未来所需的知识与技能,更重要的是能使青少年获得科学思想、科学精神、科学态度及科学方法的熏陶和培养。
  • 动物解剖学与组织胚胎学

    动物解剖学与组织胚胎学

    本书介绍了牛、羊、猪、马的解剖学知识,家禽解剖学特征,动物细胞学、基本组织、主要器官组织和胚胎学基本知识。
  • 不容忽视的全球污染(人与环境知识丛书)

    不容忽视的全球污染(人与环境知识丛书)

    《不容忽视的全球污染》的初衷,是希望通过汇集这些跨国界的污染话题,引起人们的警示与反思。在社会朝着更加快捷、现代的方向发展的今天,我们更应该处理好个人与自然、个人与社会的关系。毕竟,人是要靠一定的环境才能够生存发展的。如果环境被污染破坏殆尽,人类也就失去了依存的空间。
热门推荐
  • 天地传说之弱水三千

    天地传说之弱水三千

    “逆行风,我以弱湖之水同生本源向天地起誓,我与你生生世世、不死不休,如违此誓,天神共诛,轮回不收!”说完将心头之血导出,那本就是如天地精气般的存在,一挥舞,立即消失于天地间。女子抹了一下嘴边流淌的鲜血,强撑着口念法决瞬间化成一束耀眼的光芒朝着直击天际的水柱而去,顷刻间便消失了踪影,而后面的男子想要阻止已是来不及了,不住惊喊“不要啊,弱水,不要,我错了,是我错了,你快回来……”可惜已然晚矣,剩下的不过是痛彻心扉的悔恨!“曾经沧海难为水,除却巫山不是云”这是那个可爱、古灵精怪的女子在消逝之前说过的……可又能如何,斯人已去!
  • 暮华阙:等君同

    暮华阙:等君同

    是羁绊,是执念,是千年的一瞥,是她对他的爱。是冷眼旁观,是百年相伴,是最初的动心,是他入骨相思。他是正邪两派谈之色变的人物,淡漠冷静,杀伐果断,却为她沦陷;她是月灵族第一继承人,洞察世事,纯真如初,却甘为他舍弃永生。只是千年之中谁弃了初心,封印过往?可到了一切的尽头,又是谁用尽全部说出那句,你,是我最后的信仰。
  • 火影佐助往事

    火影佐助往事

    这是一本佐助回首往事的书。本书高度尊重原著。
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 异界之文武双残

    异界之文武双残

    魔能念咒毁天下,武能化气斩乾坤,但是我都不会。。。这是一本关于异界魔法斗气的,主角黑发黑瞳与众不同,但是也因为这个悲剧的不能用魔法,也不能修炼斗气。唯有依靠的是与他一起穿越而来的金属牌,这是什么?一切都在文武双残。
  • 诡谈笔记

    诡谈笔记

    你有没有在夜里醒来惊得一身冷汗滑落,像不像浴室喷头落下的水滴!?一滴两滴你有没有见那夜里树间的蛛网,会不会是由你床边多出的那缕长发所结!?一个两个还记不记得门前生老妪那诡诞的眼神?会不会是窗外凝望你的猫所化!?一双两双那么你又有没有听过耳边有一曲这样的歌谣!?风吹过,鬼敲门。风铃阵阵,欲断魂。行夜路,鬼吹灯。唤名声声,迷心神。乌云夜,鬼惊魂。阴风涔涔,随行人。长途路,鬼缠人。睡意沉沉,死归程。你若要问我们是谁,我们会说你我见过。兴许是在夜里,在影中,亦或是在镜里,在梦中。我们就是一次次为你们驱邪避灾的道家之人,而我叫梨小梵。别说你不信这世间有鬼,因为他就藏在你的心里!--梨小梵
  • 球球大作战之赛季伊始

    球球大作战之赛季伊始

    巨人网络全新力作登陆手游平台,阿里巴巴为了拓新领域与腾讯追名逐利强势进入电子产业,而球球大作战这款游戏正式阿里看中并进入的第一个全力支持产业,于是各地直播平台,球球赛事,商业活动如雨后春笋般出现,走上了球球巅峰
  • 婢女戏情

    婢女戏情

    [花雨授权]如果你长了一张花容月貌的脸,你会怎样?当然要靠这张脸兴风作浪了,于是乎——美艳婢女与狂妄主子的战争正式开始!阴谋,毒药,美人计,苦肉计……连环登场!
  • 化龙升仙

    化龙升仙

    迫於恓惶那可论,两代愁,三生恨,风飘雨摇,此生几浮沉?为泯恩仇逆天命,绝世尘,怎能沦。人道天命终难并,无情道,有情人,可怜红颜,为卿伤心神!破帝登顶仗龙矢,渺沧海,踏天宸!.........................................新书新作者,新人新故事
  • 【完】痞女穿越深宫:与魅君过招

    【完】痞女穿越深宫:与魅君过招

    赌鬼老妈死性不改,招惹地下钱庄,害得她被车撞飞,一命呜呼……居然穿了,还是金光灿烂的皇宫,她钱多多终于掉进钱堆里了……可是衰命衰到脚后跟,遇到让人流口水的蓝眼睛皇帝,像响尾蛇一样冷血与狡黠。原来,现任老爸抢了他的老婆,现在被打败了,将她当贡品,天啊,不想死……好在她赞美了他的眼睛,从小被视为妖孽的皇帝将她扔进了冷宫……冷宫里也有谋杀,她成了人灭口的对像……虽然宫深如海,美女都跟她过不去,可是帅哥哥赏心悦目……没事跟帅将军斗斗嘴,扑倒个帅丞相当红颜,皇帝嘛,只想魅上他,然后一脚踢到天外去,太欺侮人了,以权谋人,钱多多不是好惹的!死不承认?先摆平蛇太子,然后打七寸……究竟有几个好哥哥,嘿嘿,要好好数数啊……皇帝又吃醋了……火候到,让他死去活来……